Transpositions
Content created by Egbert Rijke, Fredrik Bakke, Eléonore Mangel, Jonathan Prieto-Cubides, Elisabeth Stenholm and Victor Blanchi.
Created on 2022-03-12.
Last modified on 2024-04-11.
module finite-group-theory.transpositions where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.well-ordering-principle-standard-finite-types open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.automorphisms open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-propositions open import foundation.decidable-subtypes open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equality-dependent-pair-types open import foundation.equivalence-extensionality open import foundation.equivalences open import foundation.equivalences-maybe open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.homotopies open import foundation.identity-types open import foundation.injective-maps open import foundation.involutions open import foundation.logical-equivalences open import foundation.negated-equality open import foundation.propositional-extensionality open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.sets open import foundation.transport-along-identifications open import foundation.type-arithmetic-empty-type open import foundation.unit-type open import foundation.univalence open import foundation.universe-levels open import lists.concatenation-lists open import lists.functoriality-lists open import lists.lists open import univalent-combinatorics.2-element-decidable-subtypes open import univalent-combinatorics.2-element-types open import univalent-combinatorics.counting open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
Transpositions are permutations that swap two elements.
Definitions
Transpositions
module _ {l1 l2 : Level} {X : UU l1} (P : 2-Element-Decidable-Subtype l2 X) where map-transposition'' : Σ X (λ x → is-decidable (is-in-2-Element-Decidable-Subtype P x)) → Σ X (λ x → is-decidable (is-in-2-Element-Decidable-Subtype P x)) pr1 (map-transposition'' (pair x (inl p))) = pr1 (map-swap-2-Element-Decidable-Subtype P (pair x p)) pr2 (map-transposition'' (pair x (inl p))) = inl (pr2 (map-swap-2-Element-Decidable-Subtype P (pair x p))) pr1 (map-transposition'' (pair x (inr np))) = x pr2 (map-transposition'' (pair x (inr np))) = inr np map-transposition' : (x : X) (d : is-decidable (is-in-2-Element-Decidable-Subtype P x)) → X map-transposition' x (inl p) = pr1 (map-swap-2-Element-Decidable-Subtype P (pair x p)) map-transposition' x (inr np) = x map-transposition : X → X map-transposition x = map-transposition' x ( is-decidable-subtype-subtype-2-Element-Decidable-Subtype P x) preserves-subtype-map-transposition : (x : X) → is-in-2-Element-Decidable-Subtype P x → is-in-2-Element-Decidable-Subtype P (map-transposition x) preserves-subtype-map-transposition x p = tr ( λ R → is-in-2-Element-Decidable-Subtype P (map-transposition' x R)) { x = inl p} { y = is-decidable-subtype-subtype-2-Element-Decidable-Subtype P x} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-2-Element-Decidable-Subtype P x))) ( pr2 ( map-swap-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype P) ( pair x p))) is-involution-map-transposition' : (x : X) (d : is-decidable (is-in-2-Element-Decidable-Subtype P x)) (d' : is-decidable ( is-in-2-Element-Decidable-Subtype P (map-transposition' x d))) → Id (map-transposition' (map-transposition' x d) d') x is-involution-map-transposition' x (inl p) (inl p') = ( ap ( λ y → map-transposition' (map-transposition' x (inl p)) (inl y)) ( eq-is-in-2-Element-Decidable-Subtype P)) ∙ ( ap ( pr1) ( is-involution-aut-2-element-type ( 2-element-type-2-Element-Decidable-Subtype P) ( swap-2-Element-Decidable-Subtype P) ( pair x p))) is-involution-map-transposition' x (inl p) (inr np') = ex-falso (np' (pr2 (map-swap-2-Element-Decidable-Subtype P (pair x p)))) is-involution-map-transposition' x (inr np) (inl p') = ex-falso (np p') is-involution-map-transposition' x (inr np) (inr np') = refl is-involution-map-transposition : is-involution map-transposition is-involution-map-transposition x = is-involution-map-transposition' x ( is-decidable-subtype-subtype-2-Element-Decidable-Subtype P x) ( is-decidable-subtype-subtype-2-Element-Decidable-Subtype P ( map-transposition' x ( is-decidable-subtype-subtype-2-Element-Decidable-Subtype P x))) is-equiv-map-transposition : is-equiv map-transposition is-equiv-map-transposition = is-equiv-is-involution is-involution-map-transposition transposition : X ≃ X pr1 transposition = map-transposition pr2 transposition = is-equiv-map-transposition module _ {l1 l2 : Level} {X : UU l1} where is-transposition-permutation-Prop : X ≃ X → Prop (l1 ⊔ lsuc l2) is-transposition-permutation-Prop f = trunc-Prop (fiber (transposition {l2 = l2}) f) is-transposition-permutation : X ≃ X → UU (l1 ⊔ lsuc l2) is-transposition-permutation f = type-Prop (is-transposition-permutation-Prop f) is-prop-is-transposition-permutation : (f : X ≃ X) → is-prop (is-transposition-permutation f) is-prop-is-transposition-permutation f = is-prop-type-Prop (is-transposition-permutation-Prop f)
The standard transposition obtained from a pair of distinct points
module _ {l : Level} {X : UU l} (H : has-decidable-equality X) {x y : X} (p : x ≠ y) where standard-transposition : Aut X standard-transposition = transposition (standard-2-Element-Decidable-Subtype H p) map-standard-transposition : X → X map-standard-transposition = map-equiv standard-transposition abstract left-computation-standard-transposition : Id (map-standard-transposition x) y left-computation-standard-transposition with is-decidable-type-prop-standard-2-Element-Decidable-Subtype H p x ... | inl pp = ap pr1 ( compute-swap-2-Element-Type ( 2-element-type-standard-2-Element-Decidable-Subtype H p) ( pair x pp) ( pair y (inr refl)) ( λ q → p (ap pr1 q))) ... | inr np = ex-falso (np (inl refl)) abstract right-computation-standard-transposition : Id (map-standard-transposition y) x right-computation-standard-transposition with is-decidable-type-prop-standard-2-Element-Decidable-Subtype H p y ... | inl pp = ap pr1 ( compute-swap-2-Element-Type ( 2-element-type-standard-2-Element-Decidable-Subtype H p) ( pair y pp) ( pair x (inl refl)) ( λ q → p (ap pr1 (inv q)))) ... | inr np = ex-falso (np (inr refl)) abstract is-fixed-point-standard-transposition : (z : X) → x ≠ z → y ≠ z → map-standard-transposition z = z is-fixed-point-standard-transposition z q r with is-decidable-type-prop-standard-2-Element-Decidable-Subtype H p z ... | inl (inl h) = ex-falso (q h) ... | inl (inr h) = ex-falso (r h) ... | inr np = refl
The permutation obtained from a list of transpositions
module _ {l1 l2 : Level} {X : UU l1} where permutation-list-transpositions : ( list (2-Element-Decidable-Subtype l2 X)) → Aut X permutation-list-transpositions = fold-list id-equiv (λ P e → (transposition P) ∘e e) -- !! Why not a homotopy? eq-concat-permutation-list-transpositions : (l l' : list (2-Element-Decidable-Subtype l2 X)) → Id ( ( permutation-list-transpositions l) ∘e ( permutation-list-transpositions l')) ( permutation-list-transpositions (concat-list l l')) eq-concat-permutation-list-transpositions nil l' = eq-htpy-equiv refl-htpy eq-concat-permutation-list-transpositions (cons P l) l' = eq-htpy-equiv ( λ x → ap ( map-equiv (transposition P)) ( htpy-eq-equiv (eq-concat-permutation-list-transpositions l l') x))
Properties
A transposition is not the identity equivalence
module _ {l1 l2 : Level} {X : UU l1} (P : 2-Element-Decidable-Subtype l2 X) where abstract is-not-identity-map-transposition : Id (map-transposition P) id → empty is-not-identity-map-transposition f = is-not-identity-swap-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype P) ( eq-htpy-equiv ( λ (x , p) → eq-pair-Σ ( ( ap ( map-transposition' P x) ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-2-Element-Decidable-Subtype P x)) { y = is-decidable-subtype-subtype-2-Element-Decidable-Subtype ( P) ( x)})) ∙ ( htpy-eq f x)) ( eq-is-in-2-Element-Decidable-Subtype P)))
Any transposition on a type equipped with a counting is a standard transposition
module _ {l : Level} {X : UU l} (eX : count X) (Y : 2-Element-Decidable-Subtype l X) where element-is-not-identity-map-transposition : Σ X (λ x → map-transposition Y x ≠ x) element-is-not-identity-map-transposition = exists-not-not-for-all-count ( λ z → Id (map-transposition Y z) z) ( λ x → has-decidable-equality-count eX (map-transposition Y x) x) ( eX) ( λ H → is-not-identity-map-transposition Y (eq-htpy H)) two-elements-transposition : Σ ( X) ( λ x → Σ ( X) ( λ y → Σ ( x ≠ y) ( λ np → Id ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( np)) ( Y)))) pr1 two-elements-transposition = pr1 element-is-not-identity-map-transposition pr1 (pr2 two-elements-transposition) = map-transposition Y (pr1 element-is-not-identity-map-transposition) pr1 (pr2 (pr2 two-elements-transposition)) p = pr2 element-is-not-identity-map-transposition (inv p) pr2 (pr2 (pr2 two-elements-transposition)) = eq-pair-Σ ( eq-htpy ( λ x → eq-pair-Σ ( ap pr1 { x = subtype-standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( pr1 (pr2 (pr2 two-elements-transposition))) ( x)} { y = subtype-2-Element-Decidable-Subtype Y x} ( eq-iff (type-t-coproduct-id x) (coproduct-id-type-t x))) ( eq-pair-Σ ( eq-is-prop (is-prop-is-prop (pr1 (pr1 Y x)))) ( eq-is-prop (is-prop-is-decidable (pr1 (pr2 (pr1 Y x)))))))) ( eq-is-prop ( pr2 ( has-cardinality-Prop 2 ( Σ X (λ x → type-Decidable-Prop (pr1 Y x)))))) where type-decidable-prop-pr1-two-elements-transposition : is-in-2-Element-Decidable-Subtype Y (pr1 two-elements-transposition) type-decidable-prop-pr1-two-elements-transposition = cases-type-decidable-prop-pr1-two-elements-transposition ( is-decidable-subtype-subtype-2-Element-Decidable-Subtype Y ( pr1 two-elements-transposition)) where cases-type-decidable-prop-pr1-two-elements-transposition : is-decidable ( is-in-2-Element-Decidable-Subtype Y ( pr1 two-elements-transposition)) → is-in-2-Element-Decidable-Subtype Y (pr1 two-elements-transposition) cases-type-decidable-prop-pr1-two-elements-transposition (inl Q) = Q cases-type-decidable-prop-pr1-two-elements-transposition (inr NQ) = ex-falso ( pr2 element-is-not-identity-map-transposition ( ap ( λ R → map-transposition' Y (pr1 (two-elements-transposition)) R) { x = is-decidable-subtype-subtype-2-Element-Decidable-Subtype Y ( pr1 two-elements-transposition)} { y = inr NQ} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-2-Element-Decidable-Subtype Y ( pr1 two-elements-transposition)))))) type-decidable-prop-pr1-pr2-two-elements-transposition : is-in-2-Element-Decidable-Subtype Y (pr1 (pr2 two-elements-transposition)) type-decidable-prop-pr1-pr2-two-elements-transposition = preserves-subtype-map-transposition Y (pr1 two-elements-transposition) ( type-decidable-prop-pr1-two-elements-transposition) type-t-coproduct-id : (x : X) → ( Id (pr1 two-elements-transposition) x) + ( Id (pr1 (pr2 two-elements-transposition)) x) → type-Decidable-Prop (pr1 Y x) type-t-coproduct-id x (inl Q) = tr ( is-in-2-Element-Decidable-Subtype Y) ( Q) ( type-decidable-prop-pr1-two-elements-transposition) type-t-coproduct-id x (inr Q) = tr ( is-in-2-Element-Decidable-Subtype Y) ( Q) ( type-decidable-prop-pr1-pr2-two-elements-transposition) cases-coproduct-id-type-t : (x : X) (p : is-in-2-Element-Decidable-Subtype Y x) → (h : Fin 2 ≃ type-2-Element-Decidable-Subtype Y) → (k1 k2 k3 : Fin 2) → Id ( map-inv-equiv h (pair x p)) k1 → Id ( map-inv-equiv h ( pair ( pr1 two-elements-transposition) ( type-decidable-prop-pr1-two-elements-transposition))) ( k2) → Id ( map-inv-equiv h ( pair ( pr1 (pr2 two-elements-transposition)) ( type-decidable-prop-pr1-pr2-two-elements-transposition))) ( k3) → ( Id (pr1 two-elements-transposition) x) + ( Id (pr1 (pr2 two-elements-transposition)) x) cases-coproduct-id-type-t x p h (inl (inr star)) (inl (inr star)) k3 K1 K2 K3 = inl (ap pr1 (is-injective-equiv (inv-equiv h) (K2 ∙ inv K1))) cases-coproduct-id-type-t x p h (inl (inr star)) (inr star) (inl (inr star)) K1 K2 K3 = inr (ap pr1 (is-injective-equiv (inv-equiv h) (K3 ∙ inv K1))) cases-coproduct-id-type-t x p h (inl (inr star)) (inr star) (inr star) K1 K2 K3 = ex-falso ( pr2 element-is-not-identity-map-transposition ( inv ( ap pr1 ( is-injective-equiv (inv-equiv h) (K2 ∙ inv K3))))) cases-coproduct-id-type-t x p h (inr star) (inl (inr star)) (inl (inr star)) K1 K2 K3 = ex-falso ( pr2 element-is-not-identity-map-transposition ( inv ( ap pr1 ( is-injective-equiv (inv-equiv h) (K2 ∙ inv K3))))) cases-coproduct-id-type-t x p h (inr star) (inl (inr star)) (inr star) K1 K2 K3 = inr (ap pr1 (is-injective-equiv (inv-equiv h) (K3 ∙ inv K1))) cases-coproduct-id-type-t x p h (inr star) (inr star) k3 K1 K2 K3 = inl (ap pr1 (is-injective-equiv (inv-equiv h) (K2 ∙ inv K1))) coproduct-id-type-t : (x : X) → type-Decidable-Prop (pr1 Y x) → ( Id (pr1 two-elements-transposition) x) + ( Id (pr1 (pr2 two-elements-transposition)) x) coproduct-id-type-t x p = apply-universal-property-trunc-Prop (pr2 Y) ( coproduct-Prop ( Id-Prop ( pair X (is-set-count eX)) ( pr1 two-elements-transposition) ( x)) ( Id-Prop ( pair X (is-set-count eX)) ( pr1 (pr2 two-elements-transposition)) ( x)) ( λ q r → pr2 element-is-not-identity-map-transposition (inv (q ∙ inv r)))) ( λ h → cases-coproduct-id-type-t x p h ( map-inv-equiv h (pair x p)) ( map-inv-equiv h ( pair ( pr1 two-elements-transposition) ( type-decidable-prop-pr1-two-elements-transposition))) ( map-inv-equiv h ( pair ( pr1 (pr2 two-elements-transposition)) ( type-decidable-prop-pr1-pr2-two-elements-transposition))) ( refl) ( refl) ( refl)) element-two-elements-transposition : X element-two-elements-transposition = pr1 (two-elements-transposition) other-element-two-elements-transposition : X other-element-two-elements-transposition = pr1 (pr2 two-elements-transposition) neq-elements-two-elements-transposition : element-two-elements-transposition ≠ other-element-two-elements-transposition neq-elements-two-elements-transposition = pr1 (pr2 (pr2 two-elements-transposition)) abstract cases-eq-two-elements-transposition : (x y : X) (np : x ≠ y) → type-Decidable-Prop (pr1 Y x) → type-Decidable-Prop (pr1 Y y) → is-decidable (Id (pr1 two-elements-transposition) x) → is-decidable (Id (pr1 (pr2 two-elements-transposition)) x) → is-decidable (Id (pr1 two-elements-transposition) y) → is-decidable (Id (pr1 (pr2 two-elements-transposition)) y) → ( ( Id (pr1 two-elements-transposition) x) × ( Id (pr1 (pr2 two-elements-transposition)) y)) + ( ( Id (pr1 two-elements-transposition) y) × ( Id (pr1 (pr2 two-elements-transposition)) x)) cases-eq-two-elements-transposition x y np p1 p2 (inl q) r s (inl u) = inl (pair q u) cases-eq-two-elements-transposition x y np p1 p2 (inl q) r s (inr nu) = ex-falso ( contradiction-3-distinct-element-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( pr1 (pr2 (pr2 two-elements-transposition))))) ( pair (pr1 two-elements-transposition) (inl refl)) ( pair (pr1 (pr2 two-elements-transposition)) (inr refl)) ( pair ( y) ( tr ( λ Y → type-Decidable-Prop (pr1 Y y)) ( inv (pr2 (pr2 (pr2 two-elements-transposition)))) ( p2))) ( λ p → pr1 ( pr2 (pr2 two-elements-transposition)) ( pr1 (pair-eq-Σ p))) ( λ p → nu (pr1 (pair-eq-Σ p))) ( λ p → np (inv q ∙ pr1 (pair-eq-Σ p)))) cases-eq-two-elements-transposition x y np p1 p2 (inr nq) (inl r) (inl s) u = inr (pair s r) cases-eq-two-elements-transposition x y np p1 p2 (inr nq) (inl r) (inr ns) u = ex-falso ( contradiction-3-distinct-element-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( pr1 (pr2 (pr2 two-elements-transposition))))) ( pair (pr1 two-elements-transposition) (inl refl)) ( pair (pr1 (pr2 two-elements-transposition)) (inr refl)) ( pair ( y) ( tr ( λ Y → type-Decidable-Prop (pr1 Y y)) ( inv (pr2 (pr2 (pr2 two-elements-transposition)))) ( p2))) ( λ p → pr1 ( pr2 (pr2 two-elements-transposition)) ( pr1 (pair-eq-Σ p))) ( λ p → np (inv r ∙ pr1 (pair-eq-Σ p))) ( λ p → ns (pr1 (pair-eq-Σ p)))) cases-eq-two-elements-transposition x y np p1 p2 (inr nq) (inr nr) s u = ex-falso ( contradiction-3-distinct-element-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( pr1 (pr2 (pr2 two-elements-transposition))))) ( pair (pr1 two-elements-transposition) (inl refl)) ( pair (pr1 (pr2 two-elements-transposition)) (inr refl)) ( pair ( x) ( tr ( λ Y → type-Decidable-Prop (pr1 Y x)) ( inv (pr2 (pr2 (pr2 two-elements-transposition)))) ( p1))) ( λ p → pr1 ( pr2 (pr2 two-elements-transposition)) ( pr1 (pair-eq-Σ p))) ( λ p → nr (pr1 (pair-eq-Σ p))) ( λ p → nq (pr1 (pair-eq-Σ p)))) eq-two-elements-transposition : (x y : X) (np : x ≠ y) → type-Decidable-Prop (pr1 Y x) → type-Decidable-Prop (pr1 Y y) → ( ( Id (pr1 two-elements-transposition) x) × ( Id (pr1 (pr2 two-elements-transposition)) y)) + ( ( Id (pr1 two-elements-transposition) y) × ( Id (pr1 (pr2 two-elements-transposition)) x)) eq-two-elements-transposition x y np p1 p2 = cases-eq-two-elements-transposition x y np p1 p2 ( has-decidable-equality-count eX (pr1 two-elements-transposition) x) ( has-decidable-equality-count ( eX) ( pr1 (pr2 two-elements-transposition)) ( x)) ( has-decidable-equality-count eX (pr1 two-elements-transposition) y) ( has-decidable-equality-count ( eX) ( pr1 (pr2 two-elements-transposition)) ( y))
The case of Fin n
module _ {n : ℕ} (Y : 2-Element-Decidable-Subtype (lzero) (Fin n)) where two-elements-transposition-Fin : Σ ( Fin n) ( λ x → Σ ( Fin n) ( λ y → Σ ( x ≠ y) ( λ np → Id ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-Fin n) ( np)) ( Y)))) two-elements-transposition-Fin = tr ( λ p → Σ ( Fin n) ( λ x → Σ ( Fin n) ( λ y → Σ ( x ≠ y) ( λ np → Id ( standard-2-Element-Decidable-Subtype ( p) ( np)) ( Y))))) ( eq-is-prop (is-prop-has-decidable-equality)) ( two-elements-transposition (count-Fin n) Y) element-two-elements-transposition-Fin : Fin n element-two-elements-transposition-Fin = pr1 (two-elements-transposition-Fin) other-element-two-elements-transposition-Fin : Fin n other-element-two-elements-transposition-Fin = pr1 (pr2 two-elements-transposition-Fin) neq-elements-two-elements-transposition-Fin : element-two-elements-transposition-Fin ≠ other-element-two-elements-transposition-Fin neq-elements-two-elements-transposition-Fin = pr1 (pr2 (pr2 two-elements-transposition-Fin)) eq-standard-2-element-decidable-subtype-two-elements-transposition-Fin : standard-2-Element-Decidable-Subtype ( has-decidable-equality-Fin n) ( neq-elements-two-elements-transposition-Fin) = Y eq-standard-2-element-decidable-subtype-two-elements-transposition-Fin = pr2 (pr2 (pr2 two-elements-transposition-Fin)) htpy-two-elements-transpositon-Fin : htpy-equiv ( standard-transposition ( has-decidable-equality-Fin n) ( neq-elements-two-elements-transposition-Fin)) ( transposition Y) htpy-two-elements-transpositon-Fin = htpy-eq ( ap map-transposition eq-standard-2-element-decidable-subtype-two-elements-transposition-Fin)
Transpositions can be transported along equivalences
module _ {l1 l2 l3 l4 : Level} (X : UU l1) (Y : UU l2) (e : X ≃ Y) where transposition-conjugation-equiv : ( Σ ( X → Decidable-Prop l3) ( λ P → has-cardinality ( 2) ( Σ X (type-Decidable-Prop ∘ P)))) → ( Σ ( Y → Decidable-Prop (l3 ⊔ l4)) ( λ P → has-cardinality 2 ( Σ Y (type-Decidable-Prop ∘ P)))) pr1 (pr1 (transposition-conjugation-equiv (pair P H)) x) = raise l4 (type-Decidable-Prop (P (map-inv-equiv e x))) pr1 (pr2 (pr1 (transposition-conjugation-equiv (pair P H)) x)) = is-prop-all-elements-equal (λ p1 p2 → is-injective-equiv ( inv-equiv ( compute-raise l4 (type-Decidable-Prop (P (map-inv-equiv e x))))) ( eq-is-prop (is-prop-type-Decidable-Prop (P (map-inv-equiv e x))))) pr2 (pr2 (pr1 (transposition-conjugation-equiv (pair P H)) x)) = is-decidable-raise l4 ( type-Decidable-Prop (P (map-inv-equiv e x))) ( is-decidable-Decidable-Prop (P (map-inv-equiv e x))) pr2 (transposition-conjugation-equiv (pair P H)) = apply-universal-property-trunc-Prop ( H) ( has-cardinality-Prop 2 ( Σ Y (λ x → raise l4 (type-Decidable-Prop (P (map-inv-equiv e x)))))) λ h → unit-trunc-Prop ( pair ( λ x → pair ( map-equiv e (pr1 (map-equiv h x))) ( tr ( λ g → raise l4 ( type-Decidable-Prop ( P (map-equiv g (pr1 (map-equiv h x)))))) ( inv (left-inverse-law-equiv e)) ( map-raise (pr2 (map-equiv h x))))) ( is-equiv-is-invertible ( λ (pair x p) → map-inv-equiv h ( pair (map-inv-equiv e x) (map-inv-raise p))) ( λ (pair x p) → eq-pair-Σ ( ( ap ( λ g → map-equiv ( e) ( pr1 ( map-equiv ( g) ( pair (map-inv-equiv e x) (map-inv-raise p))))) ( right-inverse-law-equiv h)) ∙ ( ap (λ g → map-equiv g x) (right-inverse-law-equiv e))) ( eq-is-prop ( pr1 ( pr2 ( pr1 ( transposition-conjugation-equiv (pair P H)) ( x)))))) ( λ b → ( ap ( λ w → map-inv-equiv ( h) ( pair (map-equiv (pr1 w) (pr1 (map-equiv h b))) (pr2 w))) { y = pair id-equiv (pr2 (map-equiv h b))} ( eq-pair-Σ ( left-inverse-law-equiv e) ( eq-is-prop ( is-prop-type-Decidable-Prop ( P (pr1 (map-equiv h b)))))) ∙ ( ap (λ g → map-equiv g b) (left-inverse-law-equiv h)))))) abstract correct-transposition-conjugation-equiv : (t : Σ ( X → Decidable-Prop l3) ( λ P → has-cardinality 2 (Σ X (type-Decidable-Prop ∘ P)))) → htpy-equiv ( transposition (transposition-conjugation-equiv t)) ( (e ∘e (transposition t)) ∘e (inv-equiv e)) correct-transposition-conjugation-equiv t x = cases-correct-transposition-conjugation-equiv ( is-decidable-Decidable-Prop (pr1 t (map-inv-equiv e x))) where cases-correct-transposition-conjugation-equiv : (Q : is-decidable (type-Decidable-Prop (pr1 t (map-inv-equiv e x)))) → Id ( map-transposition' (transposition-conjugation-equiv t) ( x) ( is-decidable-raise ( l4) ( type-Decidable-Prop (pr1 t (map-inv-equiv e x))) ( Q))) ( map-equiv e ( map-transposition' t (map-inv-equiv e x) Q)) cases-correct-transposition-conjugation-equiv (inl p) = ap ( pr1) ( compute-swap-2-Element-Type ( pair ( Σ Y (λ y → pr1 (pr1 (transposition-conjugation-equiv t) y))) ( pr2 (transposition-conjugation-equiv t))) ( pair x (map-raise p)) ( pair ( map-equiv e (pr1 second-pair-X)) ( map-raise ( tr ( λ g → type-Decidable-Prop ( pr1 t (map-equiv g (pr1 second-pair-X)))) ( inv (left-inverse-law-equiv e)) ( pr2 second-pair-X)))) λ q → has-no-fixed-points-swap-2-Element-Type ( pair (Σ X (λ y → type-Decidable-Prop (pr1 t y))) (pr2 t)) { pair (map-inv-equiv e x) p} ( eq-pair-Σ ( is-injective-equiv ( e) ( inv (pr1 (pair-eq-Σ q)) ∙ ap ( λ g → map-equiv g x) ( inv (right-inverse-law-equiv e)))) ( eq-is-prop ( is-prop-type-Decidable-Prop ( pr1 t (map-inv-equiv e x)))))) where second-pair-X : Σ X (λ y → type-Decidable-Prop (pr1 t y)) second-pair-X = map-swap-2-Element-Type (pair (Σ X (λ y → type-Decidable-Prop (pr1 t y))) (pr2 t)) (pair (map-inv-equiv e x) p) cases-correct-transposition-conjugation-equiv (inr np) = ap (λ g → map-equiv g x) (inv (right-inverse-law-equiv e)) correct-transposition-conjugation-equiv-list : (li : list ( Σ ( X → Decidable-Prop l3) ( λ P → has-cardinality 2 (Σ X (type-Decidable-Prop ∘ P))))) → htpy-equiv ( permutation-list-transpositions ( map-list transposition-conjugation-equiv li)) ( (e ∘e (permutation-list-transpositions li)) ∘e (inv-equiv e)) correct-transposition-conjugation-equiv-list nil x = ap (λ g → map-equiv g x) (inv (right-inverse-law-equiv e)) correct-transposition-conjugation-equiv-list (cons t li) x = ( correct-transposition-conjugation-equiv ( t) (map-equiv ( permutation-list-transpositions ( map-list transposition-conjugation-equiv li)) ( x))) ∙ ( ( ap ( map-equiv ((e ∘e transposition t) ∘e inv-equiv e)) ( correct-transposition-conjugation-equiv-list li x)) ∙ ( ap ( λ g → map-equiv ( ( ( (e ∘e transposition t) ∘e g) ∘e ( permutation-list-transpositions li)) ∘e ( inv-equiv e)) ( x)) ( left-inverse-law-equiv e)))
For all n : ℕ
and for each transposition of Fin n
, there exists a matching transposition in Fin (succ-ℕ n)
Fin-succ-Fin-transposition : (n : ℕ) → ( Σ ( Fin n → Decidable-Prop lzero) ( λ P → has-cardinality 2 (Σ (Fin n) (type-Decidable-Prop ∘ P)))) → ( Σ ( Fin (succ-ℕ n) → Decidable-Prop lzero) ( λ P → has-cardinality 2 ( Σ (Fin (succ-ℕ n)) (type-Decidable-Prop ∘ P)))) pr1 (Fin-succ-Fin-transposition n (pair P H)) (inl x) = P x pr1 (Fin-succ-Fin-transposition n (pair P H)) (inr x) = pair empty (pair is-prop-empty is-decidable-empty) pr2 (Fin-succ-Fin-transposition n (pair P H)) = apply-universal-property-trunc-Prop ( H) ( has-cardinality-Prop 2 ( Σ ( Fin (succ-ℕ n)) ( type-Decidable-Prop ∘ pr1 (Fin-succ-Fin-transposition n (pair P H))))) ( λ h → unit-trunc-Prop ( ( pair f (is-equiv-is-invertible inv-f retraction-f section-f)) ∘e ( ( inv-right-unit-law-coproduct-is-empty ( Σ ( Fin n) ( type-Decidable-Prop ∘ P)) ( Σ unit (λ _ → empty)) ( map-right-absorption-product)) ∘e ( h)))) where f : ( Σ (Fin n) (type-Decidable-Prop ∘ P)) + (Σ unit (λ _ → empty)) → Σ ( Fin (succ-ℕ n)) ( λ x → type-Decidable-Prop (pr1 (Fin-succ-Fin-transposition n (pair P H)) x)) f (inl (pair x p)) = pair (inl x) p inv-f : Σ ( Fin (succ-ℕ n)) ( λ x → type-Decidable-Prop (pr1 (Fin-succ-Fin-transposition n (pair P H)) x)) → (Σ (Fin n) (type-Decidable-Prop ∘ P)) + (Σ unit (λ _ → empty)) inv-f (pair (inl x) p) = inl (pair x p) retraction-f : (f ∘ inv-f) ~ id retraction-f (pair (inl x) p) = refl section-f : (inv-f ∘ f) ~ id section-f (inl (pair x p)) = refl correct-Fin-succ-Fin-transposition : (n : ℕ) → (t : Σ ( Fin n → Decidable-Prop lzero) ( λ P → has-cardinality 2 (Σ (Fin n) (type-Decidable-Prop ∘ P)))) → htpy-equiv ( transposition (Fin-succ-Fin-transposition n t)) ( pr1 ( map-equiv ( extend-equiv-Maybe (Fin-Set n)) ( transposition t))) correct-Fin-succ-Fin-transposition n t (inl x) with is-decidable-Decidable-Prop (pr1 t x) correct-Fin-succ-Fin-transposition n t (inl x) | inl p = ap ( pr1) ( compute-swap-2-Element-Type ( pair ( Σ ( Fin (succ-ℕ n)) ( type-Decidable-Prop ∘ pr1 (Fin-succ-Fin-transposition n t))) ( pr2 (Fin-succ-Fin-transposition n t))) ( pair (inl x) p) ( pair ( inl ( pr1 ( map-swap-2-Element-Type ( pair ( Σ (Fin n) (type-Decidable-Prop ∘ pr1 t)) ( pr2 t)) ( pair x p)))) ( pr2 ( map-swap-2-Element-Type ( pair ( Σ (Fin n) (type-Decidable-Prop ∘ pr1 t)) ( pr2 t)) ( pair x p)))) ( λ eq → has-no-fixed-points-swap-2-Element-Type ( pair (Σ (Fin n) (type-Decidable-Prop ∘ pr1 t)) (pr2 t)) { pair x p} ( eq-pair-Σ ( is-injective-inl (inv (pr1 (pair-eq-Σ eq)))) ( eq-is-prop (is-prop-type-Decidable-Prop (pr1 t x)))))) correct-Fin-succ-Fin-transposition n t (inl x) | inr np = refl correct-Fin-succ-Fin-transposition n t (inr star) = refl correct-Fin-succ-Fin-transposition-list : (n : ℕ) (l : list ( Σ ( Fin n → Decidable-Prop lzero) ( λ P → has-cardinality 2 (Σ (Fin n) (type-Decidable-Prop ∘ P))))) → htpy-equiv ( permutation-list-transpositions ( map-list (Fin-succ-Fin-transposition n) l)) ( pr1 ( map-equiv ( extend-equiv-Maybe (Fin-Set n)) ( permutation-list-transpositions l))) correct-Fin-succ-Fin-transposition-list n nil = inv-htpy (id-map-coproduct (Fin n) unit) correct-Fin-succ-Fin-transposition-list n (cons t l) x = correct-Fin-succ-Fin-transposition ( n) ( t) ( map-equiv ( permutation-list-transpositions ( map-list (Fin-succ-Fin-transposition n) l)) ( x)) ∙ ( (ap ( map-equiv ( pr1 ( map-equiv (extend-equiv-Maybe (Fin-Set n)) (transposition t)))) ( correct-Fin-succ-Fin-transposition-list n l x)) ∙ ( inv ( comp-extend-equiv-Maybe ( Fin-Set n) ( transposition t) ( permutation-list-transpositions l) ( x))))
eq-transposition-precomp-standard-2-Element-Decidable-Subtype : {l : Level} {X : UU l} (H : has-decidable-equality X) → {x y : X} (np : x ≠ y) → Id ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np)) ( standard-2-Element-Decidable-Subtype H np) eq-transposition-precomp-standard-2-Element-Decidable-Subtype {l} {X} H {x} {y} np = eq-pair-Σ ( eq-htpy ( λ z → eq-pair-Σ ( eq-equiv ( equiv-iff ( subtype-standard-2-Element-Decidable-Subtype H np ( map-inv-equiv (standard-transposition H np) z)) ( subtype-standard-2-Element-Decidable-Subtype H np z) ( f z) ( g z))) ( eq-pair-Σ ( eq-is-prop ( is-prop-is-prop ( pr1 (pr1 (standard-2-Element-Decidable-Subtype H np) z)))) ( eq-is-prop ( is-prop-is-decidable ( pr1 ( pr2 ( pr1 ( standard-2-Element-Decidable-Subtype H np) ( z))))))))) ( eq-is-prop is-prop-type-trunc-Prop) where f : (z : X) → pr1 ( pr1 ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np)) z) → pr1 (pr1 (standard-2-Element-Decidable-Subtype H np) z) f z (inl p) = inr ( is-injective-equiv ( standard-transposition H np) ( ( right-computation-standard-transposition H np) ∙ ( p))) f z (inr p) = inl ( is-injective-equiv ( standard-transposition H np) ( ( left-computation-standard-transposition H np) ∙ ( p))) g : (z : X) → pr1 (pr1 (standard-2-Element-Decidable-Subtype H np) z) → pr1 ( pr1 ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np)) z) g z (inl p) = inr ( ( inv ( left-computation-standard-transposition H np)) ∙ ( ap (map-standard-transposition H np) p)) g z (inr p) = inl ( ( inv ( right-computation-standard-transposition H np)) ∙ ( ap (map-standard-transposition H np) p)) eq-transposition-precomp-ineq-standard-2-Element-Decidable-Subtype : {l : Level} {X : UU l} (H : has-decidable-equality X) → {x y z w : X} (np : x ≠ y) (np' : z ≠ w) → x ≠ z → x ≠ w → y ≠ z → y ≠ w → Id ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np')) ( standard-2-Element-Decidable-Subtype H np') eq-transposition-precomp-ineq-standard-2-Element-Decidable-Subtype {l} {X} H {x} {y} {z} {w} np np' nq1 nq2 nq3 nq4 = eq-pair-Σ ( eq-htpy ( λ u → eq-pair-Σ ( eq-equiv ( equiv-iff ( subtype-standard-2-Element-Decidable-Subtype H np' ( map-inv-equiv (standard-transposition H np) u)) ( subtype-standard-2-Element-Decidable-Subtype H np' u) ( f u) ( g u))) ( eq-pair-Σ ( eq-is-prop ( is-prop-is-prop ( pr1 (pr1 (standard-2-Element-Decidable-Subtype H np') u)))) ( eq-is-prop ( is-prop-is-decidable ( pr1 ( pr2 ( pr1 ( standard-2-Element-Decidable-Subtype H np') ( u))))))))) ( eq-is-prop is-prop-type-trunc-Prop) where f : (u : X) → pr1 ( pr1 ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np')) u) → pr1 (pr1 (standard-2-Element-Decidable-Subtype H np') u) f u (inl p) = inl ( is-injective-equiv ( standard-transposition H np) ( ( is-fixed-point-standard-transposition H np z nq1 nq3) ∙ ( p))) f u (inr p) = inr ( is-injective-equiv ( standard-transposition H np) ( ( is-fixed-point-standard-transposition H np w nq2 nq4) ∙ ( p))) g : (u : X) → pr1 (pr1 (standard-2-Element-Decidable-Subtype H np') u) → pr1 ( pr1 ( precomp-equiv-2-Element-Decidable-Subtype ( standard-transposition H np) ( standard-2-Element-Decidable-Subtype H np')) u) g u (inl p) = inl ( ( inv ( is-fixed-point-standard-transposition H np z nq1 nq3)) ∙ ( ap (map-standard-transposition H np) p)) g u (inr p) = inr ( ( inv ( is-fixed-point-standard-transposition H np w nq2 nq4)) ∙ ( ap (map-standard-transposition H np) p))
module _ {l1 : Level} (X : UU l1) (l l' : Level) where cases-eq-equiv-universes-transposition : ( P : 2-Element-Decidable-Subtype l X) (x : X) → ( d : is-decidable (is-in-2-Element-Decidable-Subtype P x)) → Id ( map-transposition' P x d) ( map-transposition ( map-equiv (equiv-universes-2-Element-Decidable-Subtype X l l') P) ( x)) cases-eq-equiv-universes-transposition P x (inl p) = ( ap pr1 ( inv ( compute-swap-2-Element-Decidable-Subtype ( map-equiv (equiv-universes-2-Element-Decidable-Subtype X l l') P) ( pair x (pr1 (iff-universes-decidable-subtype X l l' (pr1 P) x) p)) ( pair ( pr1 (map-swap-2-Element-Decidable-Subtype P (pair x p))) ( pr1 ( iff-universes-decidable-subtype X l l' (pr1 P) ( pr1 (map-swap-2-Element-Decidable-Subtype P (pair x p)))) ( pr2 (map-swap-2-Element-Decidable-Subtype P (pair x p))))) ( λ q → has-no-fixed-points-swap-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype P) ( eq-pair-Σ ( pr1 (pair-eq-Σ (inv q))) ( eq-is-prop (is-prop-type-Decidable-Prop (pr1 P x)))))))) ∙ ap ( λ d' → map-transposition' ( map-equiv ( equiv-universes-2-Element-Decidable-Subtype X l l') ( P)) ( x) ( d')) { x = inl (pr1 (iff-universes-decidable-subtype X l l' (pr1 P) x) p)} { y = is-decidable-Decidable-Prop ( map-equiv (equiv-universes-decidable-subtype X l l') (pr1 P) x)} ( eq-is-prop ( is-prop-is-decidable ( is-prop-type-Decidable-Prop (map-equiv (equiv-universes-decidable-subtype X l l') (pr1 P) x)))) cases-eq-equiv-universes-transposition P x (inr np) = ap ( λ d' → map-transposition' ( map-equiv ( equiv-universes-2-Element-Decidable-Subtype X l l') ( P)) ( x) ( d')) { x = inr (np ∘ pr2 (iff-universes-decidable-subtype X l l' (pr1 P) x))} { y = is-decidable-Decidable-Prop ( map-equiv (equiv-universes-decidable-subtype X l l') (pr1 P) x)} ( eq-is-prop ( is-prop-is-decidable ( is-prop-type-Decidable-Prop (map-equiv (equiv-universes-decidable-subtype X l l') (pr1 P) x)))) eq-equiv-universes-transposition : ( P : 2-Element-Decidable-Subtype l X) → Id ( transposition P) ( transposition ( map-equiv (equiv-universes-2-Element-Decidable-Subtype X l l') P)) eq-equiv-universes-transposition P = eq-htpy-equiv ( λ x → cases-eq-equiv-universes-transposition P x ( is-decidable-Decidable-Prop (pr1 P x))) eq-equiv-universes-transposition-list : ( li : list (2-Element-Decidable-Subtype l X)) → Id ( permutation-list-transpositions li) ( permutation-list-transpositions ( map-list ( map-equiv (equiv-universes-2-Element-Decidable-Subtype X l l')) ( li))) eq-equiv-universes-transposition-list nil = refl eq-equiv-universes-transposition-list (cons P li) = ap-binary ( _∘e_) ( eq-equiv-universes-transposition P) ( eq-equiv-universes-transposition-list li)
Conjugate of a transposition is also a transposition
module _ {l1 : Level} {X : UU l1} (H : has-decidable-equality X) {x y z : X} (npxy : x ≠ y) (npyz : y ≠ z) (npxz : x ≠ z) where cases-htpy-conjugate-transposition : (w : X) → ( is-decidable (w = x)) → ( is-decidable (w = y)) → ( is-decidable (w = z)) → Id ( map-equiv ( standard-transposition H npyz ∘e ( standard-transposition H npxy ∘e standard-transposition H npyz)) w) ( map-equiv ( standard-transposition H npxz) w) cases-htpy-conjugate-transposition x (inl refl) _ _ = ( ( ap ( λ w → map-equiv ( standard-transposition H npyz ∘e standard-transposition H npxy) ( w)) ( is-fixed-point-standard-transposition ( H) ( npyz) ( x) ( npxy ∘ inv) ( npxz ∘ inv))) ∙ ( ( ap ( λ w → map-equiv (standard-transposition H npyz) w) ( left-computation-standard-transposition H npxy)) ∙ ( ( left-computation-standard-transposition H npyz) ∙ ( ( inv (left-computation-standard-transposition H npxz)))))) cases-htpy-conjugate-transposition y (inr neqx) (inl refl) _ = ( ( ap ( λ w → map-equiv ( standard-transposition H npyz ∘e standard-transposition H npxy) ( w)) ( left-computation-standard-transposition H npyz)) ∙ ( ( ap ( λ w → map-equiv (standard-transposition H npyz) w) ( is-fixed-point-standard-transposition H npxy z npxz npyz)) ∙ ( ( right-computation-standard-transposition H npyz) ∙ ( inv ( is-fixed-point-standard-transposition ( H) ( npxz) ( y) ( npxy) ( npyz ∘ inv)))))) cases-htpy-conjugate-transposition z (inr neqx) (inr neqy) (inl refl) = ( ( ap ( λ w → map-equiv ( standard-transposition H npyz ∘e standard-transposition H npxy) ( w)) ( right-computation-standard-transposition H npyz)) ∙ ( ( ap ( λ w → map-equiv (standard-transposition H npyz) w) ( right-computation-standard-transposition H npxy)) ∙ ( ( is-fixed-point-standard-transposition ( H) ( npyz) ( x) ( npxy ∘ inv) ( npxz ∘ inv)) ∙ ( inv (right-computation-standard-transposition H npxz))))) cases-htpy-conjugate-transposition w (inr neqx) (inr neqy) (inr neqz) = ( ( ap ( λ w → map-equiv ( standard-transposition H npyz ∘e standard-transposition H npxy) ( w)) ( is-fixed-point-standard-transposition ( H) ( npyz) ( w) ( neqy ∘ inv) ( neqz ∘ inv))) ∙ ( ( ap ( λ w → map-equiv (standard-transposition H npyz) w) ( is-fixed-point-standard-transposition ( H) ( npxy) ( w) ( neqx ∘ inv) ( neqy ∘ inv))) ∙ ( ( is-fixed-point-standard-transposition ( H) ( npyz) ( w) ( neqy ∘ inv) ( neqz ∘ inv)) ∙ ( inv ( is-fixed-point-standard-transposition ( H) ( npxz) ( w) ( neqx ∘ inv) ( neqz ∘ inv)))))) htpy-conjugate-transposition : htpy-equiv ( standard-transposition H npyz ∘e ( standard-transposition H npxy ∘e standard-transposition H npyz)) ( standard-transposition H npxz) htpy-conjugate-transposition w = cases-htpy-conjugate-transposition w ( H w x) ( H w y) ( H w z)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2024-01-12. Fredrik Bakke. Make type arguments implicit for
eq-equiv
(#998). - 2023-11-24. Egbert Rijke. Refactor precomposition (#937).