Left Kan extensions in precategories
Content created by Ben Connors.
Created on 2025-06-21.
Last modified on 2025-06-21.
module category-theory.left-kan-extensions-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.left-extensions-precategories open import category-theory.natural-transformations-functors-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels
Idea
A
left Kan extension¶
of functor F : C → D
between
precategories along another functor
p : C → C'
is the universal
left extension of F
along
p
. That is, (L, α)
is a left Kan extension if for every other left extension
(G, β)
there is a unique natural transformation γ : L ⇒ G
such that
γ ∘ α = β
. In particular, (L, α)
is initial in the category of left
extensions of F
along p
.
More concretely, we require the function left-extension-map-Precategory
to be
an equivalence.
Definition
module _ {l1 l2 l3 l4 l5 l6 : Level} (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6) (p : functor-Precategory C C') (F : functor-Precategory C D) (R : left-extension-Precategory C C' D p F) where is-left-kan-extension-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) is-left-kan-extension-Precategory = ( G : functor-Precategory C' D) → is-equiv (left-extension-map-Precategory C C' D p F R G) module _ {l1 l2 l3 l4 l5 l6 : Level} (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6) (p : functor-Precategory C C') (F : functor-Precategory C D) where left-kan-extension-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) left-kan-extension-Precategory = Σ ( left-extension-Precategory C C' D p F) ( is-left-kan-extension-Precategory C C' D p F) module _ {l1 l2 l3 l4 l5 l6 : Level} (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6) (p : functor-Precategory C C') (F : functor-Precategory C D) (R : left-kan-extension-Precategory C C' D p F) where left-extension-left-kan-extension-Precategory : left-extension-Precategory C C' D p F left-extension-left-kan-extension-Precategory = pr1 R is-left-kan-extension-left-kan-extension-Precategory : is-left-kan-extension-Precategory C C' D p F (pr1 R) is-left-kan-extension-left-kan-extension-Precategory = pr2 R extension-left-kan-extension-Precategory : functor-Precategory C' D extension-left-kan-extension-Precategory = extension-left-extension-Precategory C C' D p F left-extension-left-kan-extension-Precategory natural-transformation-left-kan-extension-Precategory : natural-transformation-Precategory C D ( F) ( comp-functor-Precategory C C' D ( extension-left-extension-Precategory C C' D p F left-extension-left-kan-extension-Precategory) ( p)) natural-transformation-left-kan-extension-Precategory = natural-transformation-left-extension-Precategory C C' D p F left-extension-left-kan-extension-Precategory
See also
- Right Kan extensions for the dual concept.
Recent changes
- 2025-06-21. Ben Connors. Dualize limits, right Kan extensions, and monads (#1442).