Left Kan extensions in precategories

Content created by Ben Connors.

Created on 2025-06-21.
Last modified on 2025-06-21.

module category-theory.left-kan-extensions-precategories where
Imports
open import category-theory.functors-precategories
open import category-theory.left-extensions-precategories
open import category-theory.natural-transformations-functors-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.universe-levels

Idea

A left Kan extension of functor F : C → D between precategories along another functor p : C → C' is the universal left extension of F along p. That is, (L, α) is a left Kan extension if for every other left extension (G, β) there is a unique natural transformation γ : L ⇒ G such that γ ∘ α = β. In particular, (L, α) is initial in the category of left extensions of F along p.

More concretely, we require the function left-extension-map-Precategory to be an equivalence.

Definition

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6)
  (p : functor-Precategory C C') (F : functor-Precategory C D)
  (R : left-extension-Precategory C C' D p F)
  where

  is-left-kan-extension-Precategory :
    UU (l1  l2  l3  l4  l5  l6)
  is-left-kan-extension-Precategory =
    ( G : functor-Precategory C' D) 
      is-equiv (left-extension-map-Precategory C C' D p F R G)

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6)
  (p : functor-Precategory C C') (F : functor-Precategory C D)
  where

  left-kan-extension-Precategory : UU (l1  l2  l3  l4  l5  l6)
  left-kan-extension-Precategory =
    Σ ( left-extension-Precategory C C' D p F)
      ( is-left-kan-extension-Precategory C C' D p F)

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6)
  (p : functor-Precategory C C') (F : functor-Precategory C D)
  (R : left-kan-extension-Precategory C C' D p F)
  where

  left-extension-left-kan-extension-Precategory :
    left-extension-Precategory C C' D p F
  left-extension-left-kan-extension-Precategory = pr1 R

  is-left-kan-extension-left-kan-extension-Precategory :
    is-left-kan-extension-Precategory C C' D p F (pr1 R)
  is-left-kan-extension-left-kan-extension-Precategory = pr2 R

  extension-left-kan-extension-Precategory :
    functor-Precategory C' D
  extension-left-kan-extension-Precategory =
    extension-left-extension-Precategory C C' D p F
      left-extension-left-kan-extension-Precategory

  natural-transformation-left-kan-extension-Precategory :
    natural-transformation-Precategory C D
      ( F)
      ( comp-functor-Precategory C C' D
        ( extension-left-extension-Precategory C C' D p F
          left-extension-left-kan-extension-Precategory)
        ( p))
  natural-transformation-left-kan-extension-Precategory =
    natural-transformation-left-extension-Precategory C C' D p F
      left-extension-left-kan-extension-Precategory

See also

Recent changes