Nonzero integers
Content created by Fredrik Bakke, Egbert Rijke and malarbol.
Created on 2023-10-06.
Last modified on 2024-04-11.
module elementary-number-theory.nonzero-integers where
Imports
open import elementary-number-theory.integers open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negation open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels
Idea
An integer k
is said to be nonzero
if the proposition
k ≠ 0
holds.
Definition
The predicate of being a nonzero integer
is-nonzero-prop-ℤ : ℤ → Prop lzero is-nonzero-prop-ℤ k = neg-type-Prop (k = zero-ℤ) is-nonzero-ℤ : ℤ → UU lzero is-nonzero-ℤ k = type-Prop (is-nonzero-prop-ℤ k) is-prop-is-nonzero-ℤ : (k : ℤ) → is-prop (is-nonzero-ℤ k) is-prop-is-nonzero-ℤ k = is-prop-type-Prop (is-nonzero-prop-ℤ k)
The nonzero integers
nonzero-ℤ : UU lzero nonzero-ℤ = type-subtype is-nonzero-prop-ℤ module _ (k : nonzero-ℤ) where int-nonzero-ℤ : ℤ int-nonzero-ℤ = pr1 k is-nonzero-nonzero-ℤ : is-nonzero-ℤ int-nonzero-ℤ is-nonzero-nonzero-ℤ = pr2 k
The nonzero integer 1
is-nonzero-one-ℤ : is-nonzero-ℤ one-ℤ is-nonzero-one-ℤ () one-nonzero-ℤ : nonzero-ℤ pr1 one-nonzero-ℤ = one-ℤ pr2 one-nonzero-ℤ = is-nonzero-one-ℤ
Properties
The integer image of a nonzero natural number is nonzero
is-nonzero-int-ℕ : (n : ℕ) → is-nonzero-ℕ n → is-nonzero-ℤ (int-ℕ n) is-nonzero-int-ℕ zero-ℕ H p = H refl
The negative of a nonzero integer is nonzero
is-nonzero-neg-nonzero-ℤ : (x : ℤ) → is-nonzero-ℤ x → is-nonzero-ℤ (neg-ℤ x) is-nonzero-neg-nonzero-ℤ x H K = H (is-zero-is-zero-neg-ℤ x K)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-04-09. malarbol and Fredrik Bakke. The additive group of rational numbers (#1100).
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).
- 2023-10-06. Egbert Rijke and Fredrik Bakke. Torsion-free groups (#813).