Cores of precategories

Content created by Fredrik Bakke.

Created on 2023-11-01.
Last modified on 2023-11-09.

module category-theory.cores-precategories where
Imports
open import category-theory.categories
open import category-theory.isomorphisms-in-categories
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories
open import category-theory.pregroupoids
open import category-theory.replete-subprecategories
open import category-theory.subprecategories
open import category-theory.wide-subprecategories

open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.subtypes
open import foundation.torsorial-type-families
open import foundation.unit-type
open import foundation.universe-levels

Idea

The core of a precategory C is the maximal subpregroupoid of it. It consists of all objects and isomorphisms in C.

Definitions

The core wide subprecategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  core-wide-subprecategory-Precategory : Wide-Subprecategory l2 C
  pr1 core-wide-subprecategory-Precategory x y = is-iso-prop-Precategory C
  pr1 (pr2 core-wide-subprecategory-Precategory) x = is-iso-id-hom-Precategory C
  pr2 (pr2 core-wide-subprecategory-Precategory) x y z g f =
    is-iso-comp-is-iso-Precategory C

The core subprecategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  core-subprecategory-Precategory : Subprecategory lzero l2 C
  core-subprecategory-Precategory =
    subprecategory-Wide-Subprecategory C
      ( core-wide-subprecategory-Precategory C)

  is-wide-core-Precategory :
    is-wide-Subprecategory C core-subprecategory-Precategory
  is-wide-core-Precategory =
    is-wide-Wide-Subprecategory C (core-wide-subprecategory-Precategory C)

The core precategory

core-precategory-Precategory :
  {l1 l2 : Level} (C : Precategory l1 l2)  Precategory l1 l2
core-precategory-Precategory C =
  precategory-Wide-Subprecategory C (core-wide-subprecategory-Precategory C)

The core pregroupoid

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  is-pregroupoid-core-Precategory :
    is-pregroupoid-Precategory (core-precategory-Precategory C)
  pr1 (pr1 (is-pregroupoid-core-Precategory x y (f , f' , l , r))) = f'
  pr1 (pr2 (pr1 (is-pregroupoid-core-Precategory x y (f , f' , l , r)))) = f
  pr1 (pr2 (pr2 (pr1 (is-pregroupoid-core-Precategory x y (f , f' , l , r))))) =
    r
  pr2 (pr2 (pr2 (pr1 (is-pregroupoid-core-Precategory x y (f , f' , l , r))))) =
    l
  pr1 (pr2 (is-pregroupoid-core-Precategory x y (f , f' , l , r))) =
    eq-type-subtype (is-iso-prop-Precategory C) l
  pr2 (pr2 (is-pregroupoid-core-Precategory x y (f , f' , l , r))) =
    eq-type-subtype (is-iso-prop-Precategory C) r

  core-pregroupoid-Precategory : Pregroupoid l1 l2
  pr1 core-pregroupoid-Precategory = core-precategory-Precategory C
  pr2 core-pregroupoid-Precategory = is-pregroupoid-core-Precategory

Properties

Computing isomorphisms in the core

module _
  {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C}
  where

  compute-iso-core-Precategory :
    iso-Precategory C x y  iso-Precategory (core-precategory-Precategory C) x y
  compute-iso-core-Precategory =
    compute-iso-Pregroupoid (core-pregroupoid-Precategory C)

  inv-compute-iso-core-Precategory :
    iso-Precategory (core-precategory-Precategory C) x y  iso-Precategory C x y
  inv-compute-iso-core-Precategory =
    inv-compute-iso-Pregroupoid (core-pregroupoid-Precategory C)

The core is replete

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  is-replete-core-Precategory :
    is-replete-Subprecategory C (core-subprecategory-Precategory C)
  pr1 (is-replete-core-Precategory x y (f , is-iso-f)) = star
  pr1 (pr2 (is-replete-core-Precategory x y (f , is-iso-f))) = is-iso-f
  pr1 (pr2 (pr2 (is-replete-core-Precategory x y (f , is-iso-f)))) = f
  pr1 (pr2 (pr2 (pr2 (is-replete-core-Precategory x y (f , f' , l , r))))) = r
  pr2 (pr2 (pr2 (pr2 (is-replete-core-Precategory x y (f , f' , l , r))))) = l

The base precategory is a category if and only if the core is

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  is-torsorial-iso-core-is-category-Precategory :
    is-category-Precategory C 
    (x : obj-Precategory C) 
    is-torsorial (iso-Precategory (core-precategory-Precategory C) x)
  is-torsorial-iso-core-is-category-Precategory is-category-C x =
    is-contr-equiv
      ( Σ (obj-Category (C , is-category-C)) (iso-Precategory C x))
      ( equiv-tot  y  inv-compute-iso-core-Precategory C))
      ( is-torsorial-iso-Category (C , is-category-C) x)

  is-category-core-is-category-Precategory :
    is-category-Precategory C 
    is-category-Precategory (core-precategory-Precategory C)
  is-category-core-is-category-Precategory is-category-C x =
    fundamental-theorem-id
      ( is-torsorial-iso-core-is-category-Precategory is-category-C x)
      ( iso-eq-Precategory (core-precategory-Precategory C) x)

  is-torsorial-iso-is-category-core-Precategory :
    is-category-Precategory (core-precategory-Precategory C) 
    (x : obj-Precategory C) 
    is-torsorial (iso-Precategory C x)
  is-torsorial-iso-is-category-core-Precategory is-category-core-C x =
    is-contr-equiv
      ( Σ ( obj-Category (core-precategory-Precategory C , is-category-core-C))
          ( iso-Precategory (core-precategory-Precategory C) x))
      ( equiv-tot  y  compute-iso-core-Precategory C))
      ( is-torsorial-iso-Category
        ( core-precategory-Precategory C , is-category-core-C)
        ( x))

  is-category-is-category-core-Precategory :
    is-category-Precategory (core-precategory-Precategory C) 
    is-category-Precategory C
  is-category-is-category-core-Precategory is-category-core-C x =
    fundamental-theorem-id
      ( is-torsorial-iso-is-category-core-Precategory is-category-core-C x)
      ( iso-eq-Precategory C x)

The construction of the core is idempotent

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  is-idempotent-core-Precategory :
    ( core-precategory-Precategory (core-precategory-Precategory C)) =
    ( core-precategory-Precategory C)
  is-idempotent-core-Precategory = {!   !}

See also

Recent changes