Fibers of directed trees
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-05-03.
Last modified on 2023-09-15.
module trees.fibers-directed-trees where
Imports
open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import graph-theory.directed-graphs open import graph-theory.fibers-directed-graphs open import trees.bases-directed-trees open import trees.directed-trees open import trees.morphisms-directed-trees
Idea
The fiber of a directed tree T
at a node x
consists of all nodes y
equipped with a walk w : walk T y x
. An edge from (y, w)
to (z , v)
consists of an edge e : edge T x y
such that w = cons-walk e v
.
Definitions
The underlying graph of the fiber of T
at x
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) (x : node-Directed-Tree T) where node-fiber-Directed-Tree : UU (l1 ⊔ l2) node-fiber-Directed-Tree = node-fiber-Directed-Graph (graph-Directed-Tree T) x node-inclusion-fiber-Directed-Tree : node-fiber-Directed-Tree → node-Directed-Tree T node-inclusion-fiber-Directed-Tree = node-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x walk-node-inclusion-fiber-Directed-Tree : (y : node-fiber-Directed-Tree) → walk-Directed-Tree T (node-inclusion-fiber-Directed-Tree y) x walk-node-inclusion-fiber-Directed-Tree = walk-node-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x root-fiber-Directed-Tree : node-fiber-Directed-Tree root-fiber-Directed-Tree = root-fiber-Directed-Graph (graph-Directed-Tree T) x is-root-fiber-Directed-Tree : node-fiber-Directed-Tree → UU (l1 ⊔ l2) is-root-fiber-Directed-Tree = is-root-fiber-Directed-Graph (graph-Directed-Tree T) x edge-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree) → UU (l1 ⊔ l2) edge-fiber-Directed-Tree = edge-fiber-Directed-Graph (graph-Directed-Tree T) x edge-inclusion-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree) (e : edge-fiber-Directed-Tree y z) → edge-Directed-Tree T ( node-inclusion-fiber-Directed-Tree y) ( node-inclusion-fiber-Directed-Tree z) edge-inclusion-fiber-Directed-Tree = edge-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x walk-edge-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree) (e : edge-fiber-Directed-Tree y z) → walk-node-inclusion-fiber-Directed-Tree y = cons-walk-Directed-Tree T ( edge-inclusion-fiber-Directed-Tree y z e) ( walk-node-inclusion-fiber-Directed-Tree z) walk-edge-fiber-Directed-Tree = walk-edge-fiber-Directed-Graph (graph-Directed-Tree T) x graph-fiber-Directed-Tree : Directed-Graph (l1 ⊔ l2) (l1 ⊔ l2) graph-fiber-Directed-Tree = graph-fiber-Directed-Graph (graph-Directed-Tree T) x walk-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree) → UU (l1 ⊔ l2) walk-fiber-Directed-Tree = walk-fiber-Directed-Graph (graph-Directed-Tree T) x walk-to-root-fiber-walk-Directed-Tree : (y : node-Directed-Tree T) (w : walk-Directed-Tree T y x) → walk-fiber-Directed-Tree (y , w) root-fiber-Directed-Tree walk-to-root-fiber-walk-Directed-Tree = walk-to-root-fiber-walk-Directed-Graph (graph-Directed-Tree T) x walk-to-root-fiber-Directed-Tree : (y : node-fiber-Directed-Tree) → walk-fiber-Directed-Tree y root-fiber-Directed-Tree walk-to-root-fiber-Directed-Tree = walk-to-root-fiber-Directed-Graph (graph-Directed-Tree T) x
The fiber of T
at x
center-unique-direct-successor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree) → ( is-root-fiber-Directed-Tree y) + ( Σ ( node-fiber-Directed-Tree) ( edge-fiber-Directed-Tree y)) center-unique-direct-successor-fiber-Directed-Tree = center-unique-direct-successor-fiber-Directed-Graph ( graph-Directed-Tree T) x contraction-unique-direct-successor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree) → ( p : ( is-root-fiber-Directed-Tree y) + ( Σ ( node-fiber-Directed-Tree) (edge-fiber-Directed-Tree y))) → center-unique-direct-successor-fiber-Directed-Tree y = p contraction-unique-direct-successor-fiber-Directed-Tree = contraction-unique-direct-successor-fiber-Directed-Graph ( graph-Directed-Tree T) x unique-direct-successor-fiber-Directed-Tree : unique-direct-successor-Directed-Graph ( graph-fiber-Directed-Tree) ( root-fiber-Directed-Tree) unique-direct-successor-fiber-Directed-Tree = unique-direct-successor-fiber-Directed-Graph (graph-Directed-Tree T) x is-tree-fiber-Directed-Tree : is-tree-Directed-Graph graph-fiber-Directed-Tree is-tree-fiber-Directed-Tree = is-tree-fiber-Directed-Graph (graph-Directed-Tree T) x fiber-Directed-Tree : Directed-Tree (l1 ⊔ l2) (l1 ⊔ l2) fiber-Directed-Tree = fiber-Directed-Graph (graph-Directed-Tree T) x inclusion-fiber-Directed-Tree : hom-Directed-Tree fiber-Directed-Tree T inclusion-fiber-Directed-Tree = inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x
Computing the children of a node in a fiber
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) (x : node-Directed-Tree T) where direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → UU (l1 ⊔ l2) direct-predecessor-fiber-Directed-Tree = direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x direct-predecessor-inclusion-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → direct-predecessor-fiber-Directed-Tree y → direct-predecessor-Directed-Tree T ( node-inclusion-fiber-Directed-Tree T x y) direct-predecessor-inclusion-fiber-Directed-Tree = direct-predecessor-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x compute-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → direct-predecessor-fiber-Directed-Tree y ≃ direct-predecessor-Directed-Tree T ( node-inclusion-fiber-Directed-Tree T x y) compute-direct-predecessor-fiber-Directed-Tree = compute-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x map-compute-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → direct-predecessor-fiber-Directed-Tree y → direct-predecessor-Directed-Tree T ( node-inclusion-fiber-Directed-Tree T x y) map-compute-direct-predecessor-fiber-Directed-Tree = map-compute-direct-predecessor-fiber-Directed-Graph ( graph-Directed-Tree T) ( x) htpy-compute-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → direct-predecessor-inclusion-fiber-Directed-Tree y ~ map-compute-direct-predecessor-fiber-Directed-Tree y htpy-compute-direct-predecessor-fiber-Directed-Tree = htpy-compute-direct-predecessor-fiber-Directed-Graph ( graph-Directed-Tree T) ( x) inv-compute-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → direct-predecessor-Directed-Tree T ( node-inclusion-fiber-Directed-Tree T x y) ≃ direct-predecessor-fiber-Directed-Tree y inv-compute-direct-predecessor-fiber-Directed-Tree = inv-compute-direct-predecessor-fiber-Directed-Graph ( graph-Directed-Tree T) ( x) Eq-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → (u v : direct-predecessor-fiber-Directed-Tree y) → UU (l1 ⊔ l2) Eq-direct-predecessor-fiber-Directed-Tree = Eq-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x eq-Eq-direct-predecessor-fiber-Directed-Tree : (y : node-fiber-Directed-Tree T x) → ( u v : direct-predecessor-fiber-Directed-Tree y) → Eq-direct-predecessor-fiber-Directed-Tree y u v → u = v eq-Eq-direct-predecessor-fiber-Directed-Tree = eq-Eq-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x
The fiber of a tree at a base node
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) (b : base-Directed-Tree T) where fiber-base-Directed-Tree : Directed-Tree (l1 ⊔ l2) (l1 ⊔ l2) fiber-base-Directed-Tree = fiber-Directed-Tree T (node-base-Directed-Tree T b) node-fiber-base-Directed-Tree : UU (l1 ⊔ l2) node-fiber-base-Directed-Tree = node-Directed-Tree fiber-base-Directed-Tree edge-fiber-base-Directed-Tree : (x y : node-fiber-base-Directed-Tree) → UU (l1 ⊔ l2) edge-fiber-base-Directed-Tree = edge-Directed-Tree fiber-base-Directed-Tree root-fiber-base-Directed-Tree : node-fiber-base-Directed-Tree root-fiber-base-Directed-Tree = root-Directed-Tree fiber-base-Directed-Tree walk-fiber-base-Directed-Tree : (x y : node-fiber-base-Directed-Tree) → UU (l1 ⊔ l2) walk-fiber-base-Directed-Tree = walk-Directed-Tree fiber-base-Directed-Tree
Recent changes
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).
- 2023-05-04. Egbert Rijke. Trees (#587).
- 2023-05-03. Egbert Rijke. Enriched directed trees and elements of W-types (#561).