Fibers of directed trees

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-05-03.
Last modified on 2023-09-15.

module trees.fibers-directed-trees where
Imports
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import graph-theory.directed-graphs
open import graph-theory.fibers-directed-graphs

open import trees.bases-directed-trees
open import trees.directed-trees
open import trees.morphisms-directed-trees

Idea

The fiber of a directed tree T at a node x consists of all nodes y equipped with a walk w : walk T y x. An edge from (y, w) to (z , v) consists of an edge e : edge T x y such that w = cons-walk e v.

Definitions

The underlying graph of the fiber of T at x

module _
  {l1 l2 : Level} (T : Directed-Tree l1 l2) (x : node-Directed-Tree T)
  where

  node-fiber-Directed-Tree : UU (l1  l2)
  node-fiber-Directed-Tree =
    node-fiber-Directed-Graph (graph-Directed-Tree T) x

  node-inclusion-fiber-Directed-Tree :
    node-fiber-Directed-Tree  node-Directed-Tree T
  node-inclusion-fiber-Directed-Tree =
    node-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x

  walk-node-inclusion-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree) 
    walk-Directed-Tree T (node-inclusion-fiber-Directed-Tree y) x
  walk-node-inclusion-fiber-Directed-Tree =
    walk-node-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x

  root-fiber-Directed-Tree : node-fiber-Directed-Tree
  root-fiber-Directed-Tree =
    root-fiber-Directed-Graph (graph-Directed-Tree T) x

  is-root-fiber-Directed-Tree : node-fiber-Directed-Tree  UU (l1  l2)
  is-root-fiber-Directed-Tree =
    is-root-fiber-Directed-Graph (graph-Directed-Tree T) x

  edge-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree)  UU (l1  l2)
  edge-fiber-Directed-Tree =
    edge-fiber-Directed-Graph (graph-Directed-Tree T) x

  edge-inclusion-fiber-Directed-Tree :
    (y z : node-fiber-Directed-Tree) (e : edge-fiber-Directed-Tree y z) 
    edge-Directed-Tree T
      ( node-inclusion-fiber-Directed-Tree y)
      ( node-inclusion-fiber-Directed-Tree z)
  edge-inclusion-fiber-Directed-Tree =
    edge-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x

  walk-edge-fiber-Directed-Tree :
    (y z : node-fiber-Directed-Tree) (e : edge-fiber-Directed-Tree y z) 
    walk-node-inclusion-fiber-Directed-Tree y 
    cons-walk-Directed-Tree T
      ( edge-inclusion-fiber-Directed-Tree y z e)
      ( walk-node-inclusion-fiber-Directed-Tree z)
  walk-edge-fiber-Directed-Tree =
    walk-edge-fiber-Directed-Graph (graph-Directed-Tree T) x

  graph-fiber-Directed-Tree : Directed-Graph (l1  l2) (l1  l2)
  graph-fiber-Directed-Tree =
    graph-fiber-Directed-Graph (graph-Directed-Tree T) x

  walk-fiber-Directed-Tree : (y z : node-fiber-Directed-Tree)  UU (l1  l2)
  walk-fiber-Directed-Tree =
    walk-fiber-Directed-Graph (graph-Directed-Tree T) x

  walk-to-root-fiber-walk-Directed-Tree :
    (y : node-Directed-Tree T) (w : walk-Directed-Tree T y x) 
    walk-fiber-Directed-Tree (y , w) root-fiber-Directed-Tree
  walk-to-root-fiber-walk-Directed-Tree =
    walk-to-root-fiber-walk-Directed-Graph (graph-Directed-Tree T) x

  walk-to-root-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree) 
    walk-fiber-Directed-Tree y root-fiber-Directed-Tree
  walk-to-root-fiber-Directed-Tree =
    walk-to-root-fiber-Directed-Graph (graph-Directed-Tree T) x

The fiber of T at x

  center-unique-direct-successor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree) 
    ( is-root-fiber-Directed-Tree y) +
    ( Σ ( node-fiber-Directed-Tree) ( edge-fiber-Directed-Tree y))
  center-unique-direct-successor-fiber-Directed-Tree =
    center-unique-direct-successor-fiber-Directed-Graph
      ( graph-Directed-Tree T) x

  contraction-unique-direct-successor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree) 
    ( p :
      ( is-root-fiber-Directed-Tree y) +
      ( Σ ( node-fiber-Directed-Tree) (edge-fiber-Directed-Tree y))) 
    center-unique-direct-successor-fiber-Directed-Tree y  p
  contraction-unique-direct-successor-fiber-Directed-Tree =
    contraction-unique-direct-successor-fiber-Directed-Graph
      ( graph-Directed-Tree T) x

  unique-direct-successor-fiber-Directed-Tree :
    unique-direct-successor-Directed-Graph
      ( graph-fiber-Directed-Tree)
      ( root-fiber-Directed-Tree)
  unique-direct-successor-fiber-Directed-Tree =
    unique-direct-successor-fiber-Directed-Graph (graph-Directed-Tree T) x

  is-tree-fiber-Directed-Tree :
    is-tree-Directed-Graph graph-fiber-Directed-Tree
  is-tree-fiber-Directed-Tree =
    is-tree-fiber-Directed-Graph (graph-Directed-Tree T) x

  fiber-Directed-Tree : Directed-Tree (l1  l2) (l1  l2)
  fiber-Directed-Tree = fiber-Directed-Graph (graph-Directed-Tree T) x

  inclusion-fiber-Directed-Tree : hom-Directed-Tree fiber-Directed-Tree T
  inclusion-fiber-Directed-Tree =
    inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x

Computing the children of a node in a fiber

module _
  {l1 l2 : Level} (T : Directed-Tree l1 l2) (x : node-Directed-Tree T)
  where

  direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x)  UU (l1  l2)
  direct-predecessor-fiber-Directed-Tree =
    direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x

  direct-predecessor-inclusion-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    direct-predecessor-fiber-Directed-Tree y 
    direct-predecessor-Directed-Tree T
      ( node-inclusion-fiber-Directed-Tree T x y)
  direct-predecessor-inclusion-fiber-Directed-Tree =
    direct-predecessor-inclusion-fiber-Directed-Graph (graph-Directed-Tree T) x

  compute-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    direct-predecessor-fiber-Directed-Tree y 
    direct-predecessor-Directed-Tree T
      ( node-inclusion-fiber-Directed-Tree T x y)
  compute-direct-predecessor-fiber-Directed-Tree =
    compute-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x

  map-compute-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    direct-predecessor-fiber-Directed-Tree y 
    direct-predecessor-Directed-Tree T
      ( node-inclusion-fiber-Directed-Tree T x y)
  map-compute-direct-predecessor-fiber-Directed-Tree =
    map-compute-direct-predecessor-fiber-Directed-Graph
      ( graph-Directed-Tree T)
      ( x)

  htpy-compute-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    direct-predecessor-inclusion-fiber-Directed-Tree y ~
    map-compute-direct-predecessor-fiber-Directed-Tree y
  htpy-compute-direct-predecessor-fiber-Directed-Tree =
    htpy-compute-direct-predecessor-fiber-Directed-Graph
      ( graph-Directed-Tree T)
      ( x)

  inv-compute-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    direct-predecessor-Directed-Tree T
      ( node-inclusion-fiber-Directed-Tree T x y) 
    direct-predecessor-fiber-Directed-Tree y
  inv-compute-direct-predecessor-fiber-Directed-Tree =
    inv-compute-direct-predecessor-fiber-Directed-Graph
      ( graph-Directed-Tree T)
      ( x)

  Eq-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    (u v : direct-predecessor-fiber-Directed-Tree y)  UU (l1  l2)
  Eq-direct-predecessor-fiber-Directed-Tree =
    Eq-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x

  eq-Eq-direct-predecessor-fiber-Directed-Tree :
    (y : node-fiber-Directed-Tree T x) 
    ( u v : direct-predecessor-fiber-Directed-Tree y) 
    Eq-direct-predecessor-fiber-Directed-Tree y u v  u  v
  eq-Eq-direct-predecessor-fiber-Directed-Tree =
    eq-Eq-direct-predecessor-fiber-Directed-Graph (graph-Directed-Tree T) x

The fiber of a tree at a base node

module _
  {l1 l2 : Level} (T : Directed-Tree l1 l2) (b : base-Directed-Tree T)
  where

  fiber-base-Directed-Tree : Directed-Tree (l1  l2) (l1  l2)
  fiber-base-Directed-Tree = fiber-Directed-Tree T (node-base-Directed-Tree T b)

  node-fiber-base-Directed-Tree : UU (l1  l2)
  node-fiber-base-Directed-Tree = node-Directed-Tree fiber-base-Directed-Tree

  edge-fiber-base-Directed-Tree :
    (x y : node-fiber-base-Directed-Tree)  UU (l1  l2)
  edge-fiber-base-Directed-Tree = edge-Directed-Tree fiber-base-Directed-Tree

  root-fiber-base-Directed-Tree : node-fiber-base-Directed-Tree
  root-fiber-base-Directed-Tree = root-Directed-Tree fiber-base-Directed-Tree

  walk-fiber-base-Directed-Tree :
    (x y : node-fiber-base-Directed-Tree)  UU (l1  l2)
  walk-fiber-base-Directed-Tree = walk-Directed-Tree fiber-base-Directed-Tree

Recent changes