Radical ideals generated by subsets of commutative rings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-08.
module commutative-algebra.radical-ideals-generated-by-subsets-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.ideals-commutative-rings open import commutative-algebra.ideals-generated-by-subsets-commutative-rings open import commutative-algebra.radical-ideals-commutative-rings open import commutative-algebra.radicals-of-ideals-commutative-rings open import commutative-algebra.subsets-commutative-rings open import foundation.subtypes open import foundation.universe-levels
Idea
The radical ideal generated by a subset S
of a
commutative ring is the least
radical ideal I
containing S
.
Definitions
The universal property of the radical ideal generated by a subset
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) (I : radical-ideal-Commutative-Ring l3 A) (H : S ⊆ subset-radical-ideal-Commutative-Ring A I) where is-radical-ideal-generated-by-subset-Commutative-Ring : (l : Level) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l) is-radical-ideal-generated-by-subset-Commutative-Ring l = (J : radical-ideal-Commutative-Ring l A) → S ⊆ subset-radical-ideal-Commutative-Ring A J → subset-radical-ideal-Commutative-Ring A I ⊆ subset-radical-ideal-Commutative-Ring A J
The radical ideal generated by a subset
module _ {l1 l2 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) where radical-ideal-subset-Commutative-Ring : radical-ideal-Commutative-Ring (l1 ⊔ l2) A radical-ideal-subset-Commutative-Ring = radical-of-ideal-Commutative-Ring A (ideal-subset-Commutative-Ring A S) ideal-radical-ideal-subset-Commutative-Ring : ideal-Commutative-Ring (l1 ⊔ l2) A ideal-radical-ideal-subset-Commutative-Ring = ideal-radical-ideal-Commutative-Ring A radical-ideal-subset-Commutative-Ring subset-radical-ideal-subset-Commutative-Ring : subset-Commutative-Ring (l1 ⊔ l2) A subset-radical-ideal-subset-Commutative-Ring = subset-radical-ideal-Commutative-Ring A radical-ideal-subset-Commutative-Ring contains-subset-radical-ideal-subset-Commutative-Ring : S ⊆ subset-radical-ideal-subset-Commutative-Ring contains-subset-radical-ideal-subset-Commutative-Ring x p = contains-ideal-radical-of-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( x) ( contains-subset-ideal-subset-Commutative-Ring A S x p) is-radical-ideal-generated-by-subset-radical-ideal-subset-Commutative-Ring : {l : Level} → is-radical-ideal-generated-by-subset-Commutative-Ring A S ( radical-ideal-subset-Commutative-Ring) ( contains-subset-radical-ideal-subset-Commutative-Ring) ( l) is-radical-ideal-generated-by-subset-radical-ideal-subset-Commutative-Ring K H = is-radical-of-ideal-radical-of-ideal-Commutative-Ring A ( ideal-subset-Commutative-Ring A S) ( K) ( is-ideal-generated-by-subset-ideal-subset-Commutative-Ring A S ( ideal-radical-ideal-Commutative-Ring A K) ( H))
Recent changes
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).