Nil ideals of rings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.
Created on 2022-05-20.
Last modified on 2023-06-08.
module ring-theory.nil-ideals-rings where
Imports
open import foundation.propositions open import foundation.universe-levels open import ring-theory.ideals-rings open import ring-theory.left-ideals-rings open import ring-theory.nilpotent-elements-rings open import ring-theory.right-ideals-rings open import ring-theory.rings
Idea
A nil ideal in a ring is an ideal in which every element is nilpotent
Definition
Nil left ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : left-ideal-Ring l2 R) where is-nil-left-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-left-ideal-ring-Prop = Π-Prop ( type-left-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-left-ideal-Ring R I x)) is-nil-left-ideal-Ring : UU (l1 ⊔ l2) is-nil-left-ideal-Ring = type-Prop is-nil-left-ideal-ring-Prop is-prop-is-nil-left-ideal-Ring : is-prop is-nil-left-ideal-Ring is-prop-is-nil-left-ideal-Ring = is-prop-type-Prop is-nil-left-ideal-ring-Prop
Nil right ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) where is-nil-right-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-right-ideal-ring-Prop = Π-Prop ( type-right-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-right-ideal-Ring R I x)) is-nil-right-ideal-Ring : UU (l1 ⊔ l2) is-nil-right-ideal-Ring = type-Prop is-nil-right-ideal-ring-Prop is-prop-is-nil-right-ideal-Ring : is-prop is-nil-right-ideal-Ring is-prop-is-nil-right-ideal-Ring = is-prop-type-Prop is-nil-right-ideal-ring-Prop
Nil ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : ideal-Ring l2 R) where is-nil-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-ideal-ring-Prop = Π-Prop ( type-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-ideal-Ring R I x)) is-nil-ideal-Ring : UU (l1 ⊔ l2) is-nil-ideal-Ring = type-Prop is-nil-ideal-ring-Prop is-prop-is-nil-ideal-Ring : is-prop is-nil-ideal-Ring is-prop-is-nil-ideal-Ring = is-prop-type-Prop is-nil-ideal-ring-Prop
Recent changes
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).