Boolean rings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-05-24.
Last modified on 2024-10-05.
module commutative-algebra.boolean-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.universe-levels open import ring-theory.idempotent-elements-rings
Idea
A boolean ring is a commutative ring in which every element is idempotent.
Definition
is-boolean-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → UU l is-boolean-Commutative-Ring A = (x : type-Commutative-Ring A) → is-idempotent-element-Ring (ring-Commutative-Ring A) x Boolean-Ring : (l : Level) → UU (lsuc l) Boolean-Ring l = Σ (Commutative-Ring l) is-boolean-Commutative-Ring module _ {l : Level} (A : Boolean-Ring l) where commutative-ring-Boolean-Ring : Commutative-Ring l commutative-ring-Boolean-Ring = pr1 A
Recent changes
- 2024-10-05. Fredrik Bakke. chore: a few typos in algebra (#1187).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).