Cauchy approximations in pseudometric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.cauchy-approximations-pseudometric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.pseudometric-spaces open import metric-spaces.short-functions-pseudometric-spaces
Idea
A
Cauchy approximation¶
in a pseudometric space A
is a map f
from ℚ⁺
to the
carrier type of A
such that for all positive rationals ε
and δ
, f ε
and
f δ
are in a
(ε + δ
)-neighborhood,
i.e., the distance between f ε
and f δ
is bounded by ε + δ
.
Definitions
Cauchy approximations in pseudometric spaces
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) where is-cauchy-approximation-prop-Pseudometric-Space : (ℚ⁺ → type-Pseudometric-Space A) → Prop l2 is-cauchy-approximation-prop-Pseudometric-Space f = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℚ⁺) ( λ δ → neighborhood-prop-Pseudometric-Space A (ε +ℚ⁺ δ) (f ε) (f δ))) is-cauchy-approximation-Pseudometric-Space : (ℚ⁺ → type-Pseudometric-Space A) → UU l2 is-cauchy-approximation-Pseudometric-Space = type-Prop ∘ is-cauchy-approximation-prop-Pseudometric-Space cauchy-approximation-Pseudometric-Space : UU (l1 ⊔ l2) cauchy-approximation-Pseudometric-Space = type-subtype is-cauchy-approximation-prop-Pseudometric-Space
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (f : cauchy-approximation-Pseudometric-Space A) where map-cauchy-approximation-Pseudometric-Space : ℚ⁺ → type-Pseudometric-Space A map-cauchy-approximation-Pseudometric-Space = pr1 f is-cauchy-approximation-map-cauchy-approximation-Pseudometric-Space : (ε δ : ℚ⁺) → neighborhood-Pseudometric-Space ( A) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Pseudometric-Space ε) ( map-cauchy-approximation-Pseudometric-Space δ) is-cauchy-approximation-map-cauchy-approximation-Pseudometric-Space = pr2 f
Properties
Constant maps in pseudometric spaces are Cauchy approximations
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (x : type-Pseudometric-Space A) where const-cauchy-approximation-Pseudometric-Space : cauchy-approximation-Pseudometric-Space A pr1 const-cauchy-approximation-Pseudometric-Space _ = x pr2 const-cauchy-approximation-Pseudometric-Space ε δ = refl-neighborhood-Pseudometric-Space A (ε +ℚ⁺ δ) x
The action of short maps on Cauchy approximations
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : short-function-Pseudometric-Space A B) where map-short-function-cauchy-approximation-Pseudometric-Space : cauchy-approximation-Pseudometric-Space A → cauchy-approximation-Pseudometric-Space B map-short-function-cauchy-approximation-Pseudometric-Space (u , H) = ( map-short-function-Pseudometric-Space A B f ∘ u , λ ε δ → is-short-map-short-function-Pseudometric-Space ( A) ( B) ( f) ( ε +ℚ⁺ δ) ( u ε) ( u δ) ( H ε δ))
Homotopic Cauchy approximations are equal
module _ { l1 l2 : Level} (A : Pseudometric-Space l1 l2) { f g : cauchy-approximation-Pseudometric-Space A} ( f~g : map-cauchy-approximation-Pseudometric-Space A f ~ map-cauchy-approximation-Pseudometric-Space A g) where eq-htpy-cauchy-approximation-Pseudometric-Space : f = g eq-htpy-cauchy-approximation-Pseudometric-Space = eq-type-subtype ( is-cauchy-approximation-prop-Pseudometric-Space A) ( eq-htpy f~g)
References
Our definition of Cauchy approximation follows Definition 4.5.5 of [Boo20] and Definition 11.2.10 of [UF13].
- [Boo20]
- Auke Bart Booij. Analysis in univalent type theory. PhD thesis, University of Birmingham, 2020. URL: https://etheses.bham.ac.uk/id/eprint/10411/7/Booij20PhD.pdf.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).