The functor from the precategory of metric spaces and isometries to the precategory of sets
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.functor-category-set-functions-isometry-metric-spaces where
Imports
open import category-theory.conservative-functors-precategories open import category-theory.faithful-functors-precategories open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.maps-precategories open import category-theory.precategories open import foundation.category-of-sets open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.isomorphisms-of-sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.category-of-metric-spaces-and-isometries open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.precategory-of-metric-spaces-and-isometries
Idea
Because carrier types of metric spaces are sets, there’s a forgetful functor from the category of metric spaces and isometries to the category of sets. Moreover, since the map from an isometry to its carrier map is an embedding, this functor is faithful. Finally, because the inverse of an isometric equivalence is an isometry, this functor is also conservative.
Definition
The forgetful functor from metric spaces and isometries to sets and functions
module _ (l1 l2 : Level) where functor-set-functions-isometry-Metric-Space : functor-Precategory (precategory-isometry-Metric-Space {l1} {l2}) (Set-Precategory l1) pr1 functor-set-functions-isometry-Metric-Space A = set-Metric-Space A pr2 functor-set-functions-isometry-Metric-Space = ( λ {A B} → map-isometry-Metric-Space A B) , ( ( λ g f → refl) , ( λ A → refl))
Properties
The functor from metric spaces and isometries to sets and functions is faithful
module _ (l1 l2 : Level) where is-faithful-functor-set-functions-isometry-Metric-Space : is-faithful-functor-Precategory (precategory-isometry-Metric-Space) (Set-Precategory l1) (functor-set-functions-isometry-Metric-Space l1 l2) is-faithful-functor-set-functions-isometry-Metric-Space A B = is-emb-inclusion-subtype (is-isometry-prop-Metric-Space A B)
The functor from metric spaces and isometries to sets and functions is conservative
module _ (l1 l2 : Level) where is-conservative-functor-set-functions-isometry-Metric-Space : is-conservative-functor-Precategory (precategory-isometry-Metric-Space) (Set-Precategory l1) (functor-set-functions-isometry-Metric-Space l1 l2) is-conservative-functor-set-functions-isometry-Metric-Space {A} {B} f = ( is-iso-is-equiv-isometry-Metric-Space A B f) ∘ ( is-equiv-is-iso-Set ( set-Metric-Space A) ( set-Metric-Space B))
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).