The functor from the precategory of metric spaces and isometries to the precategory of sets

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.functor-category-set-functions-isometry-metric-spaces where
Imports
open import category-theory.conservative-functors-precategories
open import category-theory.faithful-functors-precategories
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.maps-precategories
open import category-theory.precategories

open import foundation.category-of-sets
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.isomorphisms-of-sets
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.category-of-metric-spaces-and-isometries
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.precategory-of-metric-spaces-and-isometries

Idea

Because carrier types of metric spaces are sets, there’s a forgetful functor from the category of metric spaces and isometries to the category of sets. Moreover, since the map from an isometry to its carrier map is an embedding, this functor is faithful. Finally, because the inverse of an isometric equivalence is an isometry, this functor is also conservative.

Definition

The forgetful functor from metric spaces and isometries to sets and functions

module _
  (l1 l2 : Level)
  where

  functor-set-functions-isometry-Metric-Space :
    functor-Precategory
      (precategory-isometry-Metric-Space {l1} {l2})
      (Set-Precategory l1)
  pr1 functor-set-functions-isometry-Metric-Space A =
      set-Metric-Space A
  pr2 functor-set-functions-isometry-Metric-Space =
    ( λ {A B}  map-isometry-Metric-Space A B) ,
    ( ( λ g f  refl) , ( λ A  refl))

Properties

The functor from metric spaces and isometries to sets and functions is faithful

module _
  (l1 l2 : Level)
  where

  is-faithful-functor-set-functions-isometry-Metric-Space :
    is-faithful-functor-Precategory
      (precategory-isometry-Metric-Space)
      (Set-Precategory l1)
      (functor-set-functions-isometry-Metric-Space l1 l2)
  is-faithful-functor-set-functions-isometry-Metric-Space A B =
    is-emb-inclusion-subtype (is-isometry-prop-Metric-Space A B)

The functor from metric spaces and isometries to sets and functions is conservative

module _
  (l1 l2 : Level)
  where

  is-conservative-functor-set-functions-isometry-Metric-Space :
    is-conservative-functor-Precategory
      (precategory-isometry-Metric-Space)
      (Set-Precategory l1)
      (functor-set-functions-isometry-Metric-Space l1 l2)
  is-conservative-functor-set-functions-isometry-Metric-Space
    {A} {B} f =
    ( is-iso-is-equiv-isometry-Metric-Space A B f) 
    ( is-equiv-is-iso-Set
      ( set-Metric-Space A)
      ( set-Metric-Space B))

Recent changes