Comparison test for series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-30.
Last modified on 2025-12-30.
module analysis.comparison-test-series-real-numbers where
Imports
open import analysis.convergent-series-real-numbers open import analysis.nonnegative-series-real-numbers open import analysis.series-real-numbers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.binary-transport open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import metric-spaces.cauchy-sequences-metric-spaces open import order-theory.large-posets open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.sums-of-finite-sequences-of-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
A series ∑ aₙ of
nonnegative
real numbers
converges if there
exists a convergent series ∑ bₙ
such that aₙ ≤ bₙ for all n. This is the
comparison test¶
for series in the real numbers.
Definition
module _ {l1 : Level} (l2 : Level) (σ : series-ℝ l1) where comparison-test-prop-series-ℝ : Prop (l1 ⊔ lsuc l2) comparison-test-prop-series-ℝ = ( is-nonnegative-prop-series-ℝ σ) ∧ ( ∃ ( convergent-series-ℝ l2) ( λ τ → Π-Prop ( ℕ) ( λ n → leq-prop-ℝ (term-series-ℝ σ n) (term-convergent-series-ℝ τ n)))) comparison-test-series-ℝ : UU (l1 ⊔ lsuc l2) comparison-test-series-ℝ = type-Prop comparison-test-prop-series-ℝ
Properties
The comparison test implies convergence
module _ {l1 l2 : Level} (σ : series-ℝ l1) (τ : convergent-series-ℝ l2) where abstract is-convergent-is-nonnegative-is-bounded-by-convergent-series-ℝ : ((n : ℕ) → is-nonnegative-ℝ (term-series-ℝ σ n)) → ((n : ℕ) → leq-ℝ (term-series-ℝ σ n) (term-convergent-series-ℝ τ n)) → is-convergent-series-ℝ σ is-convergent-is-nonnegative-is-bounded-by-convergent-series-ℝ 0≤σₙ σₙ≤τₙ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset open do-syntax-trunc-Prop (is-convergent-prop-series-ℝ σ) in do lim-modulus-τ ← is-sum-sum-convergent-series-ℝ τ let cauchy-mod-partial-sum-τ = is-cauchy-has-limit-modulus-sequence-Metric-Space ( metric-space-ℝ l2) ( partial-sum-convergent-series-ℝ τ) ( sum-convergent-series-ℝ τ) ( lim-modulus-τ) μ = pr1 ∘ cauchy-mod-partial-sum-τ is-mod-μ = pr2 ∘ cauchy-mod-partial-sum-τ is-mod'-μ ε n k με≤n = neighborhood-dist-ℝ ε _ _ ( leq-dist-leq-diff-ℝ _ _ _ ( chain-of-inequalities partial-sum-series-ℝ σ (n +ℕ k) -ℝ partial-sum-series-ℝ σ n ≤ partial-sum-series-ℝ (drop-series-ℝ n σ) k by leq-eq-ℝ (inv (partial-sum-drop-series-ℝ n σ k)) ≤ partial-sum-series-ℝ ( drop-series-ℝ n (series-convergent-series-ℝ τ)) ( k) by leq-sum-fin-sequence-ℝ k _ _ ( λ m → σₙ≤τₙ (n +ℕ nat-Fin k m)) ≤ ( partial-sum-convergent-series-ℝ τ (n +ℕ k)) -ℝ ( partial-sum-convergent-series-ℝ τ n) by leq-eq-ℝ ( partial-sum-drop-series-ℝ ( n) ( series-convergent-series-ℝ τ) ( k)) ≤ dist-ℝ ( partial-sum-convergent-series-ℝ τ (n +ℕ k)) ( partial-sum-convergent-series-ℝ τ n) by leq-diff-dist-ℝ _ _ ≤ real-ℚ⁺ ε by leq-dist-neighborhood-ℝ ε _ _ ( is-mod-μ ( ε) ( n +ℕ k) ( n) ( transitive-leq-ℕ ( μ ε) ( n) ( n +ℕ k) ( leq-add-ℕ n k) ( με≤n)) ( με≤n))) ( transitive-leq-ℝ ( partial-sum-series-ℝ σ n -ℝ partial-sum-series-ℝ σ (n +ℕ k)) ( zero-ℝ) ( real-ℚ⁺ ε) ( is-nonnegative-real-ℝ⁰⁺ (nonnegative-real-ℚ⁺ ε)) ( binary-tr ( leq-ℝ) ( distributive-neg-diff-ℝ _ _) ( neg-zero-ℝ) ( neg-leq-ℝ ( is-nonnegative-diff-leq-ℝ ( is-increasing-partial-sum-is-nonnegative-term-series-ℝ ( σ) ( 0≤σₙ) ( n) ( n +ℕ k) ( leq-add-ℕ n k))))))) is-convergent-is-cauchy-sequence-partial-sum-series-ℝ σ ( λ ε → ( μ ε , is-cauchy-modulus-is-cauchy-modulus-sequence-Metric-Space' ( metric-space-ℝ l1) ( partial-sum-series-ℝ σ) ( ε) ( μ ε) ( is-mod'-μ ε))) module _ {l1 l2 : Level} (σ : series-ℝ l1) where is-convergent-comparison-test-series-ℝ : {l2 : Level} → comparison-test-series-ℝ l2 σ → is-convergent-series-ℝ σ is-convergent-comparison-test-series-ℝ (0≤σₙ , ∃τ) = rec-trunc-Prop ( is-convergent-prop-series-ℝ σ) ( λ (τ , σₙ≤τₙ) → is-convergent-is-nonnegative-is-bounded-by-convergent-series-ℝ ( σ) ( τ) ( 0≤σₙ) ( σₙ≤τₙ)) ( ∃τ)
External links
- Direct comparison test on Wikipedia
Recent changes
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).