The universal property of truncations
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-07-17.
Last modified on 2024-02-06.
module foundation-core.universal-property-truncation where
Imports
open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.precomposition-functions open import foundation-core.sections open import foundation-core.truncated-types open import foundation-core.truncation-levels open import foundation-core.type-theoretic-principle-of-choice
Idea
We say that a map f : A → B
into a k
-truncated type B
is a
k
-truncation of A
– or that it satisfies the universal property of
the k
-truncation of A
– if any map g : A → C
into a k
-truncated type
C
extends uniquely along f
to a map B → C
.
Definition
The condition on a map to be a truncation
precomp-Trunc : {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) (C : Truncated-Type l3 k) → (B → type-Truncated-Type C) → (A → type-Truncated-Type C) precomp-Trunc f C = precomp f (type-Truncated-Type C) module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (f : A → type-Truncated-Type B) where is-truncation : UUω is-truncation = {l : Level} (C : Truncated-Type l k) → is-equiv (precomp-Trunc f C) equiv-is-truncation : {l3 : Level} (H : is-truncation) (C : Truncated-Type l3 k) → ( type-Truncated-Type B → type-Truncated-Type C) ≃ ( A → type-Truncated-Type C) pr1 (equiv-is-truncation H C) = precomp-Trunc f C pr2 (equiv-is-truncation H C) = H C
The universal property of truncations
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (f : A → type-Truncated-Type B) where universal-property-truncation : UUω universal-property-truncation = {l : Level} (C : Truncated-Type l k) (g : A → type-Truncated-Type C) → is-contr (Σ (type-hom-Truncated-Type k B C) (λ h → h ∘ f ~ g))
The dependent universal property of truncations
precomp-Π-Truncated-Type : {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) (C : B → Truncated-Type l3 k) → ((b : B) → type-Truncated-Type (C b)) → ((a : A) → type-Truncated-Type (C (f a))) precomp-Π-Truncated-Type f C h a = h (f a) module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (f : A → type-Truncated-Type B) where dependent-universal-property-truncation : UUω dependent-universal-property-truncation = {l : Level} (X : type-Truncated-Type B → Truncated-Type l k) → is-equiv (precomp-Π-Truncated-Type f X)
Properties
Equivalences into k
-truncated types are truncations
abstract is-truncation-id : {l1 : Level} {k : 𝕋} {A : UU l1} (H : is-trunc k A) → is-truncation (A , H) id is-truncation-id H B = is-equiv-precomp-is-equiv id is-equiv-id (type-Truncated-Type B) abstract is-truncation-equiv : {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (e : A ≃ type-Truncated-Type B) → is-truncation B (map-equiv e) is-truncation-equiv B e C = is-equiv-precomp-is-equiv ( map-equiv e) ( is-equiv-map-equiv e) ( type-Truncated-Type C)
A map into a truncated type is a truncation if and only if it satisfies the universal property of the truncation
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (f : A → type-Truncated-Type B) where abstract is-truncation-universal-property-truncation : universal-property-truncation B f → is-truncation B f is-truncation-universal-property-truncation H C = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ (type-hom-Truncated-Type k B C) (λ h → (h ∘ f) ~ g)) ( equiv-tot (λ h → equiv-funext)) ( H C g)) abstract universal-property-truncation-is-truncation : is-truncation B f → universal-property-truncation B f universal-property-truncation-is-truncation H C g = is-contr-equiv' ( Σ (type-hom-Truncated-Type k B C) (λ h → (h ∘ f) = g)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (H C) g) map-is-truncation : is-truncation B f → {l : Level} (C : Truncated-Type l k) (g : A → type-Truncated-Type C) → type-hom-Truncated-Type k B C map-is-truncation H C g = pr1 (center (universal-property-truncation-is-truncation H C g)) triangle-is-truncation : (H : is-truncation B f) → {l : Level} (C : Truncated-Type l k) (g : A → type-Truncated-Type C) → map-is-truncation H C g ∘ f ~ g triangle-is-truncation H C g = pr2 (center (universal-property-truncation-is-truncation H C g))
A map into a truncated type is a truncation if and only if it satisfies the dependent universal property of the truncation
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) (f : A → type-Truncated-Type B) where abstract dependent-universal-property-truncation-is-truncation : is-truncation B f → dependent-universal-property-truncation B f dependent-universal-property-truncation-is-truncation H X = is-fiberwise-equiv-is-equiv-map-Σ ( λ (h : A → type-Truncated-Type B) → (a : A) → type-Truncated-Type (X (h a))) ( λ (g : type-Truncated-Type B → type-Truncated-Type B) → g ∘ f) ( λ g (s : (b : type-Truncated-Type B) → type-Truncated-Type (X (g b))) (a : A) → s (f a)) ( H B) ( is-equiv-equiv ( inv-distributive-Π-Σ) ( inv-distributive-Π-Σ) ( ind-Σ (λ g s → refl)) ( H (Σ-Truncated-Type B X))) ( id) abstract is-truncation-dependent-universal-property-truncation : dependent-universal-property-truncation B f → is-truncation B f is-truncation-dependent-universal-property-truncation H X = H (λ _ → X) section-is-truncation : is-truncation B f → {l3 : Level} (C : Truncated-Type l3 k) (h : A → type-Truncated-Type C) (g : type-hom-Truncated-Type k C B) → f ~ g ∘ h → section g section-is-truncation H C h g K = map-distributive-Π-Σ ( map-inv-is-equiv ( dependent-universal-property-truncation-is-truncation H ( fiber-Truncated-Type C B g)) ( λ a → (h a , inv (K a))))
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-12-10. Fredrik Bakke. Refactor universal properties for various limits (#963).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).