The uniform limit theorem for uniformly continuous maps between metric spaces
Content created by Fredrik Bakke.
Created on 2026-02-14.
Last modified on 2026-02-14.
module metric-spaces.uniform-limit-theorem-uniformly-continuous-maps-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.axiom-of-countable-choice open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.transport-along-identifications open import foundation.universe-levels open import lists.sequences open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-space-of-maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.modulated-uniformly-continuous-maps-metric-spaces open import metric-spaces.sequences-metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces
Idea
The uniform limit theorem¶ states that uniform convergence of a sequence of maps between metric spaces, i.e., convergence in the metric space of maps, preserves uniform continuity. If one has explicit moduli of uniform continuity for the maps, one can build a modulus for the limit. Assuming the axiom of countable choice, the result also applies to merely uniformly continuous maps.
Theorem
Uniform limits with a modulus of uniform convergence yield a modulus of uniform continuity
Proof. Let be a sequence of maps equipped with moduli of uniform continuity , together with a modulus of uniform convergence towards . Given , write , and let and . Uniform convergence gives within of for all . Now set . If is within of , then is within of . Combining this with the two uniform bounds and applying the triangle inequality twice yields within of . Thus we have constructed a modulus of uniform continuity for . ∎
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (u : sequence (map-Metric-Space X Y)) (f : map-Metric-Space X Y) where modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space : limit-modulus-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) → ( (n : ℕ) → modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) → modulus-of-uniform-continuity-map-Metric-Space X Y f modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space L H = let m = modulus-limit-modulus-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) ( L) ε₁ = left-summand-split-ternary-ℚ⁺ ε₂ = middle-summand-split-ternary-ℚ⁺ ε₃ = right-summand-split-ternary-ℚ⁺ ε₁₃ ε = min-ℚ⁺ (ε₁ ε) (ε₃ ε) N : ℚ⁺ → ℕ N ε = m (ε₁₃ ε) μN : (ε : ℚ⁺) → ℚ⁺ → ℚ⁺ μN ε = pr1 (H (N ε)) is-mod-μN : (ε : ℚ⁺) → is-modulus-of-uniform-continuity-map-Metric-Space X Y (u (N ε)) (μN ε) is-mod-μN ε = pr2 (H (N ε)) uniform-min : (ε : ℚ⁺) (x : type-Metric-Space X) → neighborhood-Metric-Space Y (ε₁₃ ε) (u (N ε) x) (f x) uniform-min ε = is-modulus-limit-modulus-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) ( L) ( ε₁₃ ε) ( N ε) ( refl-leq-ℕ (N ε)) uniform-left : (ε : ℚ⁺) (x : type-Metric-Space X) → neighborhood-Metric-Space Y (ε₁ ε) (u (N ε) x) (f x) uniform-left ε x = weakly-monotonic-neighborhood-Metric-Space ( Y) ( u (N ε) x) ( f x) ( ε₁₃ ε) ( ε₁ ε) ( leq-left-min-ℚ⁺ (ε₁ ε) (ε₃ ε)) ( uniform-min ε x) uniform-right : (ε : ℚ⁺) (x : type-Metric-Space X) → neighborhood-Metric-Space Y (ε₃ ε) (u (N ε) x) (f x) uniform-right ε x = weakly-monotonic-neighborhood-Metric-Space ( Y) ( u (N ε) x) ( f x) ( ε₁₃ ε) ( ε₃ ε) ( leq-right-min-ℚ⁺ (ε₁ ε) (ε₃ ε)) ( uniform-min ε x) modulus-f : ℚ⁺ → ℚ⁺ modulus-f ε = μN ε (ε₂ ε) is-modulus-f : is-modulus-of-uniform-continuity-map-Metric-Space X Y f modulus-f is-modulus-f x ε x' Nx' = tr ( is-upper-bound-dist-Metric-Space Y (f x) (f x')) ( eq-add-split-ternary-ℚ⁺ ε) ( triangular-neighborhood-Metric-Space ( Y) ( f x) ( u (N ε) x') ( f x') ( ε₁ ε +ℚ⁺ ε₂ ε) ( ε₃ ε) ( uniform-right ε x') ( triangular-neighborhood-Metric-Space ( Y) ( f x) ( u (N ε) x) ( u (N ε) x') ( ε₁ ε) ( ε₂ ε) ( is-mod-μN ε x (ε₂ ε) x' Nx') ( symmetric-neighborhood-Metric-Space ( Y) ( ε₁ ε) ( u (N ε) x) ( f x) ( uniform-left ε x)))) in ( modulus-f , is-modulus-f)
Uniform limits of maps with a modulus of uniform continuity are uniformly continuous
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (u : sequence (map-Metric-Space X Y)) (f : map-Metric-Space X Y) where abstract is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space : is-limit-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) → ( (n : ℕ) → modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) → is-uniformly-continuous-map-Metric-Space X Y f is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space L H = map-trunc-Prop ( λ L' → modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space ( X) ( Y) ( u) ( f) ( L') ( H)) ( L)
Uniform limits of maps with a truncated choice of moduli are uniformly continuous
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (u : sequence (map-Metric-Space X Y)) (f : map-Metric-Space X Y) where abstract is-uniformly-continuous-map-is-uniform-limit-sequence-map-trunc-Metric-Space : is-limit-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) → ║ ( (n : ℕ) → modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) ║₋₁ → is-uniformly-continuous-map-Metric-Space X Y f is-uniformly-continuous-map-is-uniform-limit-sequence-map-trunc-Metric-Space L = rec-trunc-Prop ( is-uniformly-continuous-prop-map-Metric-Space X Y f) ( is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space ( X) ( Y) ( u) ( f) ( L))
Uniform limits of uniformly continuous maps are uniformly continuous, assuming the axiom of countable choice
module _ {l1 l2 l3 l4 : Level} (acℕ : level-ACℕ (l1 ⊔ l2 ⊔ l4)) (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (u : sequence (map-Metric-Space X Y)) (f : map-Metric-Space X Y) where abstract is-uniformly-continuous-map-is-uniform-limit-sequence-map-ACℕ-Metric-Space : is-limit-sequence-Metric-Space ( metric-space-of-maps-Metric-Space X Y) ( u) ( f) → ( (n : ℕ) → is-uniformly-continuous-map-Metric-Space X Y (u n)) → is-uniformly-continuous-map-Metric-Space X Y f is-uniformly-continuous-map-is-uniform-limit-sequence-map-ACℕ-Metric-Space L H = rec-trunc-Prop ( is-uniformly-continuous-prop-map-Metric-Space X Y f) ( is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space ( X) ( Y) ( u) ( f) ( L)) ( acℕ (modulus-of-uniform-continuity-set-map-Metric-Space X Y ∘ u) H)
External links
- Uniform limit theorem at Wikidata
- Uniform limit theorem on Wikipedia
Recent changes
- 2026-02-14. Fredrik Bakke. Uniform limit theorem for uniformly continuous functions (#1832).