The uniform limit theorem for uniformly continuous maps between metric spaces

Content created by Fredrik Bakke.

Created on 2026-02-14.
Last modified on 2026-02-14.

module metric-spaces.uniform-limit-theorem-uniformly-continuous-maps-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.minimum-positive-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.axiom-of-countable-choice
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import lists.sequences

open import metric-spaces.limits-of-sequences-metric-spaces
open import metric-spaces.maps-metric-spaces
open import metric-spaces.metric-space-of-maps-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.modulated-uniformly-continuous-maps-metric-spaces
open import metric-spaces.sequences-metric-spaces
open import metric-spaces.uniformly-continuous-maps-metric-spaces

Idea

The uniform limit theorem states that uniform convergence of a sequence of maps between metric spaces, i.e., convergence in the metric space of maps, preserves uniform continuity. If one has explicit moduli of uniform continuity for the maps, one can build a modulus for the limit. Assuming the axiom of countable choice, the result also applies to merely uniformly continuous maps.

Theorem

Uniform limits with a modulus of uniform convergence yield a modulus of uniform continuity

Proof. Let be a sequence of maps equipped with moduli of uniform continuity , together with a modulus of uniform convergence towards . Given , write , and let and . Uniform convergence gives within of for all . Now set . If is within of , then is within of . Combining this with the two uniform bounds and applying the triangle inequality twice yields within of . Thus we have constructed a modulus of uniform continuity for . ∎

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (u : sequence (map-Metric-Space X Y))
  (f : map-Metric-Space X Y)
  where

  modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space :
    limit-modulus-sequence-Metric-Space
      ( metric-space-of-maps-Metric-Space X Y)
      ( u)
      ( f) 
    ( (n : )  modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) 
    modulus-of-uniform-continuity-map-Metric-Space X Y f
  modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space
    L H =
    let
      m =
        modulus-limit-modulus-sequence-Metric-Space
          ( metric-space-of-maps-Metric-Space X Y)
          ( u)
          ( f)
          ( L)

      ε₁ = left-summand-split-ternary-ℚ⁺
      ε₂ = middle-summand-split-ternary-ℚ⁺
      ε₃ = right-summand-split-ternary-ℚ⁺
      ε₁₃ ε = min-ℚ⁺ (ε₁ ε) (ε₃ ε)

      N : ℚ⁺  
      N ε = m (ε₁₃ ε)

      μN : (ε : ℚ⁺)  ℚ⁺  ℚ⁺
      μN ε = pr1 (H (N ε))

      is-mod-μN :
        (ε : ℚ⁺) 
        is-modulus-of-uniform-continuity-map-Metric-Space
          X Y (u (N ε)) (μN ε)
      is-mod-μN ε = pr2 (H (N ε))

      uniform-min :
        (ε : ℚ⁺) (x : type-Metric-Space X) 
        neighborhood-Metric-Space Y (ε₁₃ ε) (u (N ε) x) (f x)
      uniform-min ε =
        is-modulus-limit-modulus-sequence-Metric-Space
          ( metric-space-of-maps-Metric-Space X Y)
          ( u)
          ( f)
          ( L)
          ( ε₁₃ ε)
          ( N ε)
          ( refl-leq-ℕ (N ε))

      uniform-left :
        (ε : ℚ⁺) (x : type-Metric-Space X) 
        neighborhood-Metric-Space Y (ε₁ ε) (u (N ε) x) (f x)
      uniform-left ε x =
        weakly-monotonic-neighborhood-Metric-Space
          ( Y)
          ( u (N ε) x)
          ( f x)
          ( ε₁₃ ε)
          ( ε₁ ε)
          ( leq-left-min-ℚ⁺ (ε₁ ε) (ε₃ ε))
          ( uniform-min ε x)

      uniform-right :
        (ε : ℚ⁺) (x : type-Metric-Space X) 
        neighborhood-Metric-Space Y (ε₃ ε) (u (N ε) x) (f x)
      uniform-right ε x =
        weakly-monotonic-neighborhood-Metric-Space
          ( Y)
          ( u (N ε) x)
          ( f x)
          ( ε₁₃ ε)
          ( ε₃ ε)
          ( leq-right-min-ℚ⁺ (ε₁ ε) (ε₃ ε))
          ( uniform-min ε x)

      modulus-f : ℚ⁺  ℚ⁺
      modulus-f ε = μN ε (ε₂ ε)

      is-modulus-f :
        is-modulus-of-uniform-continuity-map-Metric-Space X Y f modulus-f
      is-modulus-f x ε x' Nx' =
        tr
          ( is-upper-bound-dist-Metric-Space Y (f x) (f x'))
          ( eq-add-split-ternary-ℚ⁺ ε)
          ( triangular-neighborhood-Metric-Space
            ( Y)
            ( f x)
            ( u (N ε) x')
            ( f x')
            ( ε₁ ε +ℚ⁺ ε₂ ε)
            ( ε₃ ε)
            ( uniform-right ε x')
            ( triangular-neighborhood-Metric-Space
              ( Y)
              ( f x)
              ( u (N ε) x)
              ( u (N ε) x')
              ( ε₁ ε)
              ( ε₂ ε)
              ( is-mod-μN ε x (ε₂ ε) x' Nx')
              ( symmetric-neighborhood-Metric-Space
                ( Y)
                ( ε₁ ε)
                ( u (N ε) x)
                ( f x)
                ( uniform-left ε x))))
    in
    ( modulus-f , is-modulus-f)

Uniform limits of maps with a modulus of uniform continuity are uniformly continuous

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (u : sequence (map-Metric-Space X Y))
  (f : map-Metric-Space X Y)
  where

  abstract
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space :
      is-limit-sequence-Metric-Space
        ( metric-space-of-maps-Metric-Space X Y)
        ( u)
        ( f) 
      ( (n : ) 
        modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) 
      is-uniformly-continuous-map-Metric-Space X Y f
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space
      L H =
      map-trunc-Prop
        ( λ L' 
          modulus-of-uniform-continuity-map-limit-modulus-sequence-map-Metric-Space
          ( X)
          ( Y)
          ( u)
          ( f)
          ( L')
          ( H))
        ( L)

Uniform limits of maps with a truncated choice of moduli are uniformly continuous

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (u : sequence (map-Metric-Space X Y))
  (f : map-Metric-Space X Y)
  where

  abstract
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-trunc-Metric-Space :
      is-limit-sequence-Metric-Space
        ( metric-space-of-maps-Metric-Space X Y)
        ( u)
        ( f) 
       ( (n : ) 
          modulus-of-uniform-continuity-map-Metric-Space X Y (u n)) ║₋₁ 
      is-uniformly-continuous-map-Metric-Space X Y f
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-trunc-Metric-Space
      L =
      rec-trunc-Prop
        ( is-uniformly-continuous-prop-map-Metric-Space X Y f)
        ( is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space
          ( X)
          ( Y)
          ( u)
          ( f)
          ( L))

Uniform limits of uniformly continuous maps are uniformly continuous, assuming the axiom of countable choice

module _
  {l1 l2 l3 l4 : Level}
  (acℕ : level-ACℕ (l1  l2  l4))
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (u : sequence (map-Metric-Space X Y))
  (f : map-Metric-Space X Y)
  where

  abstract
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-ACℕ-Metric-Space :
      is-limit-sequence-Metric-Space
        ( metric-space-of-maps-Metric-Space X Y)
        ( u)
        ( f) 
      ( (n : )  is-uniformly-continuous-map-Metric-Space X Y (u n)) 
      is-uniformly-continuous-map-Metric-Space X Y f
    is-uniformly-continuous-map-is-uniform-limit-sequence-map-ACℕ-Metric-Space
      L H =
      rec-trunc-Prop
        ( is-uniformly-continuous-prop-map-Metric-Space X Y f)
        ( is-uniformly-continuous-map-is-uniform-limit-sequence-map-Metric-Space
          ( X)
          ( Y)
          ( u)
          ( f)
          ( L))
        ( acℕ (modulus-of-uniform-continuity-set-map-Metric-Space X Y  u) H)

Recent changes