Increasing pointwise ε-δ continuous endomaps on the real numbers
Content created by Louis Wasserman.
Created on 2026-01-13.
Last modified on 2026-01-13.
module real-numbers.increasing-pointwise-epsilon-delta-continuous-endomaps-real-numbers where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.large-posets open import order-theory.order-preserving-maps-posets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.dense-subsets-real-numbers open import real-numbers.increasing-endomaps-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
This page describes the interaction of pointwise ε-δ continuity of endomaps of real numbers and being increasing.
Definition
module _ {l1 l2 : Level} (f : pointwise-ε-δ-continuous-endomap-ℝ l1 l2) where is-increasing-prop-pointwise-ε-δ-continuous-endomap-ℝ : Prop (lsuc l1 ⊔ l2) is-increasing-prop-pointwise-ε-δ-continuous-endomap-ℝ = is-increasing-prop-endomap-ℝ (map-pointwise-ε-δ-continuous-endomap-ℝ f) is-increasing-pointwise-ε-δ-continuous-endomap-ℝ : UU (lsuc l1 ⊔ l2) is-increasing-pointwise-ε-δ-continuous-endomap-ℝ = type-Prop is-increasing-prop-pointwise-ε-δ-continuous-endomap-ℝ increasing-pointwise-ε-δ-continuous-endomap-ℝ : (l1 l2 : Level) → UU (lsuc (l1 ⊔ l2)) increasing-pointwise-ε-δ-continuous-endomap-ℝ l1 l2 = type-subtype (is-increasing-prop-pointwise-ε-δ-continuous-endomap-ℝ {l1} {l2}) module _ {l1 l2 : Level} (f : increasing-pointwise-ε-δ-continuous-endomap-ℝ l1 l2) where pointwise-ε-δ-continuous-endomap-increasing-pointwise-ε-δ-continuous-endomap-ℝ : pointwise-ε-δ-continuous-endomap-ℝ l1 l2 pointwise-ε-δ-continuous-endomap-increasing-pointwise-ε-δ-continuous-endomap-ℝ = pr1 f map-increasing-pointwise-ε-δ-continuous-endomap-ℝ : ℝ l1 → ℝ l2 map-increasing-pointwise-ε-δ-continuous-endomap-ℝ = map-pointwise-ε-δ-continuous-endomap-ℝ ( pointwise-ε-δ-continuous-endomap-increasing-pointwise-ε-δ-continuous-endomap-ℝ) is-increasing-map-increasing-pointwise-ε-δ-continuous-endomap-ℝ : is-increasing-endomap-ℝ map-increasing-pointwise-ε-δ-continuous-endomap-ℝ is-increasing-map-increasing-pointwise-ε-δ-continuous-endomap-ℝ = pr2 f is-pointwise-ε-δ-continuous-map-increasing-pointwise-ε-δ-continuous-endomap-ℝ : is-pointwise-ε-δ-continuous-endomap-ℝ ( map-increasing-pointwise-ε-δ-continuous-endomap-ℝ) is-pointwise-ε-δ-continuous-map-increasing-pointwise-ε-δ-continuous-endomap-ℝ = is-pointwise-ε-δ-continuous-map-pointwise-ε-δ-continuous-endomap-ℝ ( pointwise-ε-δ-continuous-endomap-increasing-pointwise-ε-δ-continuous-endomap-ℝ)
Properties
If a pointwise ε-δ continuous function f is increasing on a dense subset of ℝ, then it is increasing on ℝ
module _ {l1 l2 l3 : Level} (f : pointwise-ε-δ-continuous-endomap-ℝ l1 l2) (S : dense-subset-ℝ l3 l1) where abstract is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ : is-increasing-on-subset-endomap-ℝ ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( subset-dense-subset-ℝ S) → is-increasing-endomap-ℝ (map-pointwise-ε-δ-continuous-endomap-ℝ f) is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ H = let f' = map-pointwise-ε-δ-continuous-endomap-ℝ f open do-syntax-trunc-Prop empty-Prop open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( λ x y x<y → leq-not-le-ℝ ( f' y) ( f' x) ( λ f'y<f'x → do (ε , f'y+ε<f'x) ← exists-positive-rational-separation-le-ℝ f'y<f'x let (εx , εy , εx+εy=ε) = split-ℚ⁺ ε (δx , Hδx) ← is-pointwise-ε-δ-continuous-map-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( x) ( εx) (δy , Hδy) ← is-pointwise-ε-δ-continuous-map-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( y) ( εy) ( ( (x' , x'∈S) , (y' , y'∈S)) , x'<y' , Nxx' , Nyy') ← exist-close-le-elements-dense-subset-ℝ S δx δy x<y not-leq-le-ℝ _ _ ( f'y+ε<f'x) ( chain-of-inequalities f' x ≤ f' x' +ℝ real-ℚ⁺ εx by left-leq-real-bound-neighborhood-ℝ ( εx) ( f' x) ( f' x') ( Hδx x' Nxx') ≤ f' y' +ℝ real-ℚ⁺ εx by preserves-leq-right-add-ℝ ( real-ℚ⁺ εx) ( f' x') ( f' y') ( H (x' , x'∈S) (y' , y'∈S) (leq-le-ℝ x'<y')) ≤ (f' y +ℝ real-ℚ⁺ εy) +ℝ real-ℚ⁺ εx by preserves-leq-right-add-ℝ ( real-ℚ⁺ εx) ( f' y') ( f' y +ℝ real-ℚ⁺ εy) ( right-leq-real-bound-neighborhood-ℝ ( εy) ( f' y) ( f' y') ( Hδy y' Nyy')) ≤ f' y +ℝ real-ℚ⁺ ε by leq-eq-ℝ ( equational-reasoning f' y +ℝ real-ℚ⁺ εy +ℝ real-ℚ⁺ εx = f' y +ℝ (real-ℚ⁺ εy +ℝ real-ℚ⁺ εx) by associative-add-ℝ _ _ _ = f' y +ℝ real-ℚ⁺ (εy +ℚ⁺ εx) by ap-add-ℝ refl (add-real-ℚ _ _) = f' y +ℝ real-ℚ⁺ ε by ap-add-ℝ ( refl) ( ap ( real-ℚ⁺) ( commutative-add-ℚ⁺ εy εx ∙ εx+εy=ε))))))
If f is pointwise continuous and increasing on the rational real numbers, it is increasing on the real numbers
module _ {l1 l2 : Level} (f : pointwise-ε-δ-continuous-endomap-ℝ l1 l2) where abstract is-increasing-is-increasing-rational-pointwise-ε-δ-continuous-endomap-ℝ : preserves-order-Poset ( ℚ-Poset) ( ℝ-Poset l2) ( map-pointwise-ε-δ-continuous-endomap-ℝ f ∘ raise-real-ℚ l1) → is-increasing-endomap-ℝ (map-pointwise-ε-δ-continuous-endomap-ℝ f) is-increasing-is-increasing-rational-pointwise-ε-δ-continuous-endomap-ℝ H = is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( dense-subset-rational-ℝ l1) ( λ (x , p , x~p) (y , q , y~q) x≤y → binary-tr ( leq-ℝ) ( ap ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( inv (eq-raise-real-rational-is-rational-ℝ x~p))) ( ap ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( inv (eq-raise-real-rational-is-rational-ℝ y~q))) ( H ( p) ( q) ( reflects-leq-real-ℚ ( leq-leq-raise-ℝ l1 ( binary-tr ( leq-ℝ) ( eq-raise-real-rational-is-rational-ℝ x~p) ( eq-raise-real-rational-is-rational-ℝ y~q) ( x≤y))))))