Small types
Content created by Fredrik Bakke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2023-06-07.
module univalent-combinatorics.small-types where open import foundation.small-types public
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Propositions
Every finite type is small.
is-small-Fin : (l : Level) → (k : ℕ) → is-small l (Fin k) pr1 (is-small-Fin l k) = raise-Fin l k pr2 (is-small-Fin l k) = compute-raise-Fin l k is-small-is-finite : {l1 : Level} (l2 : Level) → (A : 𝔽 l1) → is-small l2 (type-𝔽 A) is-small-is-finite l2 A = apply-universal-property-trunc-Prop ( is-finite-type-𝔽 A) ( is-small l2 (type-𝔽 A) , is-prop-is-small l2 (type-𝔽 A)) ( λ p → is-small-equiv' (Fin (pr1 p)) (pr2 p) (is-small-Fin l2 (pr1 p)))
Recent changes
- 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-21. Victor Blanchi. Associativity of species composition (#478).