Filters on posets
Content created by Louis Wasserman.
Created on 2025-10-06.
Last modified on 2025-10-06.
module order-theory.filters-posets where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.inhabited-subtypes open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.lower-bounds-posets open import order-theory.posets open import order-theory.subposets
Idea
A filter¶ of a
poset P
is a subposet
F
of P
with the following properties:
- Inhabitedness:
F
is inhabited. - Downward directedness: any two elements of
F
have a lower bound inF
. - Upward closure: if
x ∈ F
,p ∈ P
, andx ≤ p
, thenp ∈ F
.
Definition
module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (F : Subposet l3 P) where is-downward-directed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3) is-downward-directed-prop-Subposet = Π-Prop ( type-Subposet P F) ( λ x → Π-Prop ( type-Subposet P F) ( λ y → ∃ ( type-Subposet P F) ( is-binary-lower-bound-Poset-Prop (poset-Subposet P F) x y))) is-downward-directed-Subposet : UU (l1 ⊔ l2 ⊔ l3) is-downward-directed-Subposet = type-Prop is-downward-directed-prop-Subposet is-upward-closed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3) is-upward-closed-prop-Subposet = Π-Prop ( type-Subposet P F) ( λ (x , x∈F) → leq-prop-subtype (leq-prop-Poset P x) F) is-upward-closed-Subposet : UU (l1 ⊔ l2 ⊔ l3) is-upward-closed-Subposet = type-Prop is-upward-closed-prop-Subposet is-filter-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3) is-filter-prop-Subposet = is-inhabited-subtype-Prop F ∧ is-downward-directed-prop-Subposet ∧ is-upward-closed-prop-Subposet is-filter-Subposet : UU (l1 ⊔ l2 ⊔ l3) is-filter-Subposet = type-Prop is-filter-prop-Subposet Filter-Poset : {l1 l2 : Level} → (l : Level) → Poset l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l) Filter-Poset l P = type-subtype (is-filter-prop-Subposet {l3 = l} P)
External links
- Filter at Wikidata
- Filter (mathematics) at Wikipedia
- filter at Lab
Recent changes
- 2025-10-06. Louis Wasserman. Filters on posets (#1566).