Filters on posets

Content created by Louis Wasserman.

Created on 2025-10-06.
Last modified on 2025-10-06.

module order-theory.filters-posets where
Imports
open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.inhabited-subtypes
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.lower-bounds-posets
open import order-theory.posets
open import order-theory.subposets

Idea

A filter of a poset P is a subposet F of P with the following properties:

  • Inhabitedness: F is inhabited.
  • Downward directedness: any two elements of F have a lower bound in F.
  • Upward closure: if x ∈ F, p ∈ P, and x ≤ p, then p ∈ F.

Definition

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) (F : Subposet l3 P)
  where

  is-downward-directed-prop-Subposet : Prop (l1  l2  l3)
  is-downward-directed-prop-Subposet =
    Π-Prop
      ( type-Subposet P F)
      ( λ x 
        Π-Prop
          ( type-Subposet P F)
          ( λ y 
             ( type-Subposet P F)
              ( is-binary-lower-bound-Poset-Prop (poset-Subposet P F) x y)))

  is-downward-directed-Subposet : UU (l1  l2  l3)
  is-downward-directed-Subposet = type-Prop is-downward-directed-prop-Subposet

  is-upward-closed-prop-Subposet : Prop (l1  l2  l3)
  is-upward-closed-prop-Subposet =
    Π-Prop
      ( type-Subposet P F)
      ( λ (x , x∈F)  leq-prop-subtype (leq-prop-Poset P x) F)

  is-upward-closed-Subposet : UU (l1  l2  l3)
  is-upward-closed-Subposet = type-Prop is-upward-closed-prop-Subposet

  is-filter-prop-Subposet : Prop (l1  l2  l3)
  is-filter-prop-Subposet =
    is-inhabited-subtype-Prop F  is-downward-directed-prop-Subposet 
    is-upward-closed-prop-Subposet

  is-filter-Subposet : UU (l1  l2  l3)
  is-filter-Subposet = type-Prop is-filter-prop-Subposet

Filter-Poset :
  {l1 l2 : Level}  (l : Level)  Poset l1 l2  UU (l1  l2  lsuc l)
Filter-Poset l P = type-subtype (is-filter-prop-Subposet {l3 = l} P)

Recent changes