The irrationality of the square root of two
Content created by Louis Wasserman.
Created on 2025-11-19.
Last modified on 2025-11-19.
{-# OPTIONS --lossy-unification #-} module real-numbers.irrationality-square-root-of-two where
Imports
open import elementary-number-theory.rational-numbers open import elementary-number-theory.squares-rational-numbers open import elementary-number-theory.unsolvability-of-squaring-to-two-in-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negation open import foundation.universe-levels open import real-numbers.irrational-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.square-roots-nonnegative-real-numbers open import real-numbers.squares-real-numbers
Idea
The square root of two is not a rational real number.
The irrationality of the square root of two is the 1st theorem on Freek Wiedijk’s list of 100 theorems [Wie].
Proof
abstract irrational-sqrt-two-ℝ : is-irrational-ℝ (real-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ 2)) irrational-sqrt-two-ℝ (q , √2=q) = is-not-square-two-ℚ ( q , is-injective-real-ℚ ( ( inv (eq-real-square-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ 2))) ∙ ( ap ( square-ℝ) ( eq-sim-ℝ ( sim-rational-ℝ ( real-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ 2) , q , √2=q)))) ∙ ( square-real-ℚ q)))
See also
References
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
Recent changes
- 2025-11-19. Louis Wasserman. The square root of two is irrational (#1718).