Finite sequences in abelian groups
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-09-02.
module linear-algebra.finite-sequences-in-abelian-groups where
Imports
open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.function-abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.finite-sequences-in-monoids open import lists.finite-sequences open import univalent-combinatorics.standard-finite-types
Idea
Given an abelian group G
, the type
fin-sequence n G
of finite sequences of length
n
of elements of G
is a group given by componentwise addition.
Definitions
module _ {l : Level} (G : Ab l) where fin-sequence-type-Ab : ℕ → UU l fin-sequence-type-Ab = fin-sequence (type-Ab G) head-fin-sequence-type-Ab : (n : ℕ) → fin-sequence-type-Ab (succ-ℕ n) → type-Ab G head-fin-sequence-type-Ab = head-fin-sequence-type-Monoid (monoid-Ab G) tail-fin-sequence-type-Ab : (n : ℕ) → fin-sequence-type-Ab (succ-ℕ n) → fin-sequence-type-Ab n tail-fin-sequence-type-Ab = tail-fin-sequence-type-Monoid (monoid-Ab G) cons-fin-sequence-type-Ab : (n : ℕ) → type-Ab G → fin-sequence-type-Ab n → fin-sequence-type-Ab (succ-ℕ n) cons-fin-sequence-type-Ab = cons-fin-sequence-type-Monoid (monoid-Ab G) snoc-fin-sequence-type-Ab : (n : ℕ) → fin-sequence-type-Ab n → type-Ab G → fin-sequence-type-Ab (succ-ℕ n) snoc-fin-sequence-type-Ab = snoc-fin-sequence-type-Monoid (monoid-Ab G)
Zero finite sequences in a group
module _ {l : Level} (G : Ab l) where zero-fin-sequence-type-Ab : (n : ℕ) → fin-sequence-type-Ab G n zero-fin-sequence-type-Ab n i = zero-Ab G
Negation of finite sequences in a group
module _ {l : Level} (G : Ab l) where neg-fin-sequence-type-Ab : (n : ℕ) → fin-sequence-type-Ab G n → fin-sequence-type-Ab G n neg-fin-sequence-type-Ab n = neg-function-Ab G (Fin n)
Pointwise addition of finite sequences in a group
module _ {l : Level} (G : Ab l) where add-fin-sequence-type-Ab : (n : ℕ) (v w : fin-sequence-type-Ab G n) → fin-sequence-type-Ab G n add-fin-sequence-type-Ab = add-fin-sequence-type-Monoid (monoid-Ab G) associative-add-fin-sequence-type-Ab : (n : ℕ) (v1 v2 v3 : fin-sequence-type-Ab G n) → ( add-fin-sequence-type-Ab n ( add-fin-sequence-type-Ab n v1 v2) v3) = ( add-fin-sequence-type-Ab n v1 ( add-fin-sequence-type-Ab n v2 v3)) associative-add-fin-sequence-type-Ab = associative-add-fin-sequence-type-Monoid (monoid-Ab G) left-unit-law-add-fin-sequence-type-Ab : (n : ℕ) (v : fin-sequence-type-Ab G n) → add-fin-sequence-type-Ab n ( zero-fin-sequence-type-Ab G n) v = v left-unit-law-add-fin-sequence-type-Ab = left-unit-law-add-fin-sequence-type-Monoid (monoid-Ab G) right-unit-law-add-fin-sequence-type-Ab : (n : ℕ) (v : fin-sequence-type-Ab G n) → add-fin-sequence-type-Ab n v ( zero-fin-sequence-type-Ab G n) = v right-unit-law-add-fin-sequence-type-Ab = right-unit-law-add-fin-sequence-type-Monoid (monoid-Ab G) left-inverse-law-add-fin-sequence-type-Ab : (n : ℕ) (v : fin-sequence-type-Ab G n) → add-fin-sequence-type-Ab n ( neg-fin-sequence-type-Ab G n v) ( v) = zero-fin-sequence-type-Ab G n left-inverse-law-add-fin-sequence-type-Ab n = left-inverse-law-add-function-Ab G (Fin n) right-inverse-law-add-fin-sequence-type-Ab : (n : ℕ) (v : fin-sequence-type-Ab G n) → add-fin-sequence-type-Ab n ( v) ( neg-fin-sequence-type-Ab G n v) = zero-fin-sequence-type-Ab G n right-inverse-law-add-fin-sequence-type-Ab n = right-inverse-law-add-function-Ab G (Fin n) commutative-add-fin-sequence-type-Ab : (n : ℕ) → (v w : fin-sequence-type-Ab G n) → add-fin-sequence-type-Ab n v w = add-fin-sequence-type-Ab n w v commutative-add-fin-sequence-type-Ab n = commutative-add-function-Ab G (Fin n) ab-fin-sequence-type-Ab : ℕ → Ab l ab-fin-sequence-type-Ab n = function-Ab G (Fin n)
Recent changes
- 2025-09-02. Louis Wasserman. Finite sums in groups and abelian groups (#1527).