The poset of closed intervals in lattices

Content created by Louis Wasserman.

Created on 2025-10-06.
Last modified on 2025-10-06.

module order-theory.poset-closed-intervals-lattices where
Imports
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.closed-intervals-lattices
open import order-theory.lattices
open import order-theory.poset-closed-intervals-posets
open import order-theory.posets
open import order-theory.preorders

Idea

In a lattice L, the type of closed intervals in L itself forms a poset, with inequality defined by containment of the corresponding subtypes. Equivalently, [a,b] ≤ [c,d] if c ≤ a and b ≤ d.

Definition

module _
  {l1 l2 : Level} (L : Lattice l1 l2)
  where

  leq-prop-closed-interval-Lattice :
    Relation-Prop l2 (closed-interval-Lattice L)
  leq-prop-closed-interval-Lattice =
    leq-prop-closed-interval-Poset (poset-Lattice L)

  leq-closed-interval-Lattice : Relation l2 (closed-interval-Lattice L)
  leq-closed-interval-Lattice =
    leq-closed-interval-Poset (poset-Lattice L)

Properties

Containment is a preorder

module _
  {l1 l2 : Level} (L : Lattice l1 l2)
  where

  refl-leq-closed-interval-Lattice :
    is-reflexive (leq-closed-interval-Lattice L)
  refl-leq-closed-interval-Lattice =
    refl-leq-closed-interval-Poset (poset-Lattice L)

  transitive-leq-closed-interval-Lattice :
    is-transitive (leq-closed-interval-Lattice L)
  transitive-leq-closed-interval-Lattice =
    transitive-leq-closed-interval-Poset (poset-Lattice L)

  is-preorder-leq-closed-interval-Lattice :
    is-preorder-Relation-Prop (leq-prop-closed-interval-Lattice L)
  is-preorder-leq-closed-interval-Lattice =
    is-preorder-leq-closed-interval-Poset (poset-Lattice L)

Containment is a poset

module _
  {l1 l2 : Level} (L : Lattice l1 l2)
  where

  antisymmetric-leq-closed-interval-Lattice :
    is-antisymmetric (leq-closed-interval-Lattice L)
  antisymmetric-leq-closed-interval-Lattice =
    antisymmetric-leq-closed-interval-Poset (poset-Lattice L)

  poset-closed-interval-Lattice : Poset (l1  l2) l2
  poset-closed-interval-Lattice =
    poset-closed-interval-Poset (poset-Lattice L)

Containment of closed intervals is equivalent to containment of subtypes

module _
  {l1 l2 : Level} (L : Lattice l1 l2)
  where

  leq-subtype-leq-closed-interval-Lattice :
    ([a,b] [c,d] : closed-interval-Lattice L) 
    leq-closed-interval-Lattice L [a,b] [c,d] 
    ( subtype-closed-interval-Lattice L [a,b] 
      subtype-closed-interval-Lattice L [c,d])
  leq-subtype-leq-closed-interval-Lattice =
    leq-subtype-leq-closed-interval-Poset (poset-Lattice L)

  leq-closed-interval-leq-subtype-Lattice :
    ([a,b] [c,d] : closed-interval-Lattice L) 
    ( subtype-closed-interval-Lattice L [a,b] 
      subtype-closed-interval-Lattice L [c,d]) 
    leq-closed-interval-Lattice L [a,b] [c,d]
  leq-closed-interval-leq-subtype-Lattice =
    leq-closed-interval-leq-subtype-Poset (poset-Lattice L)

  leq-subtype-iff-leq-closed-interval-Lattice :
    ([a,b] [c,d] : closed-interval-Lattice L) 
    ( leq-closed-interval-Lattice L [a,b] [c,d] 
      ( subtype-closed-interval-Lattice L [a,b] 
        subtype-closed-interval-Lattice L [c,d]))
  leq-subtype-iff-leq-closed-interval-Lattice =
    leq-subtype-iff-leq-closed-interval-Poset (poset-Lattice L)

Recent changes