Equivalences of species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2025-08-30.
module species.equivalences-species-of-types where
Imports
open import foundation.equivalences open import foundation.identity-types open import foundation.univalence open import foundation.universe-levels open import species.species-of-types
Idea
An
equivalence¶
of species of types from F
to G
is a
pointwise equivalence.
Definition
equiv-species-types : {l1 l2 l3 : Level} → species-types l1 l2 → species-types l1 l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) equiv-species-types {l1} F G = ((X : UU l1) → F X ≃ G X)
Properties
The identity type of two species of types is equivalent to the type of equivalences between them
extensionality-species-types : {l1 l2 : Level} (F G : species-types l1 l2) → (F = G) ≃ (equiv-species-types F G) extensionality-species-types = extensionality-fam
Recent changes
- 2025-08-30. Fredrik Bakke. Some cleanup of species (#1502).
- 2023-04-28. Egbert Rijke and Fredrik Bakke. Cleaning up species (#578).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-21. Victor Blanchi. Associativity of species composition (#478).