Orthogonal maps
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2023-02-18.
Last modified on 2024-06-04.
module orthogonal-factorization-systems.orthogonal-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-morphisms-arrows open import foundation.cartesian-product-types open import foundation.composition-algebra open import foundation.contractible-maps open import foundation.contractible-types open import foundation.coproduct-types open import foundation.coproducts-pullbacks open import foundation.dependent-pair-types open import foundation.dependent-products-pullbacks open import foundation.dependent-sums-pullbacks open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.fibered-maps open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-fibers-of-maps open import foundation.homotopies open import foundation.morphisms-arrows open import foundation.postcomposition-functions open import foundation.postcomposition-pullbacks open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.products-pullbacks open import foundation.propositions open import foundation.pullbacks open import foundation.type-arithmetic-dependent-function-types open import foundation.type-theoretic-principle-of-choice open import foundation.unit-type open import foundation.universal-property-cartesian-product-types open import foundation.universal-property-coproduct-types open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-equivalences open import foundation.universal-property-pullbacks open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import orthogonal-factorization-systems.lifting-structures-on-squares open import orthogonal-factorization-systems.local-types open import orthogonal-factorization-systems.pullback-hom
Idea
The map f : A → B
is said to be
orthogonal¶ to
g : X → Y
if any of the following equivalent definitions hold
-
Their pullback-hom is an equivalence.
-
There is a unique lifting operation between
f
andg
. -
The following is a pullback square:
- ∘ f B → X -------> A → X | | g ∘ - | | g ∘ - ∨ ∨ B → Y -------> A → Y. - ∘ f
-
The induced dependent precomposition map
- ∘ f : ((x : B) → fiber g (h x)) --> ((x : A) → fiber g (h (f x)))
is an equivalence for every
h : B → Y
.
If f
is orthogonal to g
, we say that f
is
left orthogonal¶
to g
, and g
is
right orthogonal¶
to f
, and may write f ⊥ g
.
Definitions
The orthogonality predicate
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-orthogonal = is-equiv (pullback-hom f g) _⊥_ = is-orthogonal is-prop-is-orthogonal : is-prop is-orthogonal is-prop-is-orthogonal = is-property-is-equiv (pullback-hom f g) is-orthogonal-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) pr1 is-orthogonal-Prop = is-orthogonal pr2 is-orthogonal-Prop = is-prop-is-orthogonal
A term of is-right-orthogonal f g
asserts that g
is right orthogonal to f
.
is-right-orthogonal : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-right-orthogonal = is-orthogonal
A term of is-left-orthogonal f g
asserts that g
is left orthogonal to f
.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-left-orthogonal : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-left-orthogonal = is-orthogonal g f
The pullback condition for orthogonal maps
The maps f
and g
are orthogonal if and only if the square
- ∘ f
B → X -------> A → X
| |
g ∘ - | | g ∘ -
∨ ∨
B → Y -------> A → Y.
- ∘ f
is a pullback.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-orthogonal-pullback-condition = is-pullback (precomp f Y) (postcomp A g) (cone-pullback-hom f g) is-orthogonal-pullback-condition-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-orthogonal-pullback-condition-Prop = is-pullback-Prop (precomp f Y) (postcomp A g) (cone-pullback-hom f g) is-prop-is-orthogonal-pullback-condition : is-prop is-orthogonal-pullback-condition is-prop-is-orthogonal-pullback-condition = is-prop-is-pullback (precomp f Y) (postcomp A g) (cone-pullback-hom f g)
The universal property of orthogonal pairs of maps
The universal property of orthogonal maps is the universal property associated to the pullback condition, which, as opposed to the pullback condition itself, is a large proposition.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where universal-property-orthogonal-maps : UUω universal-property-orthogonal-maps = universal-property-pullback ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g)
The fiber condition for orthogonal maps
The maps f
and g
are orthogonal if and only if the induced family of maps on
fibers
(- ∘ f)
((x : B) → fiber g (h x)) --> ((x : A) → fiber g (h (f x)))
| |
| |
∨ (- ∘ f) ∨
(B → X) ------> (A → X)
| |
(g ∘ -) | | (g ∘ -)
∨ (- ∘ f) ∨
h ∈ (B → Y) ------> (A → Y)
is an equivalence for every h : B → Y
.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-fiber-condition-right-map : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-orthogonal-fiber-condition-right-map = (h : B → Y) → is-equiv (precomp-Π f (fiber g ∘ h))
Properties
Being orthogonal means that the type of lifting squares is contractible
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where unique-lifting-structure-squares-is-orthogonal : is-orthogonal f g → (h : hom-arrow f g) → is-contr (lifting-structure-square f g h) unique-lifting-structure-squares-is-orthogonal H h = is-contr-equiv ( fiber (pullback-hom f g) h) ( compute-fiber-pullback-hom f g h) ( is-contr-map-is-equiv H h) is-orthogonal-unique-lifting-structure-squares : ( (h : hom-arrow f g) → is-contr (lifting-structure-square f g h)) → is-orthogonal f g is-orthogonal-unique-lifting-structure-squares H = is-equiv-is-contr-map ( λ h → is-contr-equiv' ( lifting-structure-square f g h) ( compute-fiber-pullback-hom f g h) ( H h))
Being orthogonal means satisfying the pullback condition of being orthogonal maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition-is-orthogonal : is-orthogonal f g → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-is-orthogonal H = is-equiv-left-map-triangle ( gap-pullback-hom f g) ( map-compute-pullback-hom f g) ( pullback-hom f g) ( inv-htpy (triangle-pullback-hom f g)) ( H) ( is-equiv-map-compute-pullback-hom f g) is-orthogonal-is-orthogonal-pullback-condition : is-orthogonal-pullback-condition f g → is-orthogonal f g is-orthogonal-is-orthogonal-pullback-condition = is-equiv-top-map-triangle ( gap-pullback-hom f g) ( map-compute-pullback-hom f g) ( pullback-hom f g) ( inv-htpy (triangle-pullback-hom f g)) ( is-equiv-map-compute-pullback-hom f g)
Being orthogonal means satisfying the universal property of being orthogonal
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where universal-property-orthogonal-maps-is-orthogonal : is-orthogonal f g → universal-property-orthogonal-maps f g universal-property-orthogonal-maps-is-orthogonal H = universal-property-pullback-is-pullback ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( is-orthogonal-pullback-condition-is-orthogonal f g H) is-orthogonal-universal-property-orthogonal-maps : universal-property-orthogonal-maps f g → is-orthogonal f g is-orthogonal-universal-property-orthogonal-maps H = is-orthogonal-is-orthogonal-pullback-condition f g ( is-pullback-universal-property-pullback ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( H))
Being orthogonal means satisfying the fiber condition for orthogonal maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-fiber-condition-right-map-is-orthogonal-pullback-condition : is-orthogonal-pullback-condition f g → is-orthogonal-fiber-condition-right-map f g is-orthogonal-fiber-condition-right-map-is-orthogonal-pullback-condition H h = is-equiv-source-is-equiv-target-equiv-arrow ( precomp-Π f (fiber g ∘ h)) ( map-fiber-vertical-map-cone ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( h)) ( compute-map-fiber-vertical-pullback-hom f g h) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( H) ( h)) is-orthogonal-fiber-condition-right-map-is-orthogonal : is-orthogonal f g → is-orthogonal-fiber-condition-right-map f g is-orthogonal-fiber-condition-right-map-is-orthogonal H = is-orthogonal-fiber-condition-right-map-is-orthogonal-pullback-condition ( is-orthogonal-pullback-condition-is-orthogonal f g H) is-orthogonal-pullback-condition-is-orthogonal-fiber-condition-right-map : is-orthogonal-fiber-condition-right-map f g → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-is-orthogonal-fiber-condition-right-map H = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( λ h → is-equiv-target-is-equiv-source-equiv-arrow ( precomp-Π f (fiber g ∘ h)) ( map-fiber-vertical-map-cone ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( h)) ( compute-map-fiber-vertical-pullback-hom f g h) ( H h)) is-orthogonal-is-orthogonal-fiber-condition-right-map : is-orthogonal-fiber-condition-right-map f g → is-orthogonal f g is-orthogonal-is-orthogonal-fiber-condition-right-map H = is-orthogonal-is-orthogonal-pullback-condition f g ( is-orthogonal-pullback-condition-is-orthogonal-fiber-condition-right-map ( H))
Orthogonality is preserved by homotopies
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition-htpy : {f' : A → B} {g' : X → Y} → f ~ f' → g ~ g' → is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f' g' is-orthogonal-pullback-condition-htpy F G = is-pullback-htpy' ( htpy-precomp F Y) ( htpy-postcomp A G) ( cone-pullback-hom f g) ( ( htpy-postcomp B G) , ( htpy-precomp F X) , ( ( commutative-htpy-postcomp-htpy-precomp F G) ∙h ( inv-htpy-right-unit-htpy))) is-orthogonal-pullback-condition-htpy-left : {f' : A → B} → f ~ f' → is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f' g is-orthogonal-pullback-condition-htpy-left F = is-orthogonal-pullback-condition-htpy F refl-htpy is-orthogonal-pullback-condition-htpy-right : {g' : X → Y} → g ~ g' → is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f g' is-orthogonal-pullback-condition-htpy-right = is-orthogonal-pullback-condition-htpy refl-htpy
Equivalences are orthogonal to every map
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition-is-equiv-left : is-equiv f → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-is-equiv-left is-equiv-f = is-pullback-is-equiv-horizontal-maps ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( is-equiv-precomp-is-equiv f is-equiv-f Y) ( is-equiv-precomp-is-equiv f is-equiv-f X) is-orthogonal-is-equiv-left : is-equiv f → is-orthogonal f g is-orthogonal-is-equiv-left is-equiv-f = is-orthogonal-is-orthogonal-pullback-condition f g ( is-orthogonal-pullback-condition-is-equiv-left is-equiv-f) is-orthogonal-pullback-condition-is-equiv-right : is-equiv g → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-is-equiv-right is-equiv-g = is-pullback-is-equiv-vertical-maps ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( is-equiv-postcomp-is-equiv g is-equiv-g A) ( is-equiv-postcomp-is-equiv g is-equiv-g B) is-orthogonal-is-equiv-right : is-equiv g → is-orthogonal f g is-orthogonal-is-equiv-right is-equiv-g = is-orthogonal-is-orthogonal-pullback-condition f g ( is-orthogonal-pullback-condition-is-equiv-right is-equiv-g) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-orthogonal-pullback-condition-equiv-left : (f : A ≃ B) (g : X → Y) → is-orthogonal-pullback-condition (map-equiv f) g is-orthogonal-pullback-condition-equiv-left f g = is-orthogonal-pullback-condition-is-equiv-left ( map-equiv f) ( g) ( is-equiv-map-equiv f) is-orthogonal-equiv-left : (f : A ≃ B) (g : X → Y) → is-orthogonal (map-equiv f) g is-orthogonal-equiv-left f g = is-orthogonal-is-equiv-left (map-equiv f) g (is-equiv-map-equiv f) is-orthogonal-pullback-condition-equiv-right : (f : A → B) (g : X ≃ Y) → is-orthogonal-pullback-condition f (map-equiv g) is-orthogonal-pullback-condition-equiv-right f g = is-orthogonal-pullback-condition-is-equiv-right ( f) ( map-equiv g) ( is-equiv-map-equiv g) is-orthogonal-equiv-right : (f : A → B) (g : X ≃ Y) → is-orthogonal f (map-equiv g) is-orthogonal-equiv-right f g = is-orthogonal-is-equiv-right f (map-equiv g) (is-equiv-map-equiv g)
Right orthogonal maps are closed under composition and have the left cancellation property
Given two composable maps h
after g
, if f ⊥ h
, then f ⊥ g
if and only if
f ⊥ (h ∘ g)
.
Proof: By the pullback condition of orthogonal maps, the top square in the
below diagram is a pullback precisely when g
is right orthogonal to f
:
- ∘ f
B → X -------> A → X
| |
g ∘ - | | g ∘ -
∨ ∨
B → Y -------> A → Y
| ⌟ |
h ∘ - | | h ∘ -
∨ ∨
B → Z -------> A → Z.
- ∘ f
so the result is an instance of the vertical pasting property for pullbacks.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {Z : UU l5} (f : A → B) (g : X → Y) (h : Y → Z) where is-orthogonal-pullback-condition-right-comp : is-orthogonal-pullback-condition f h → is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f (h ∘ g) is-orthogonal-pullback-condition-right-comp = is-pullback-rectangle-is-pullback-top-square ( precomp f Z) ( postcomp A h) ( postcomp A g) ( cone-pullback-hom f h) ( cone-pullback-hom f g) up-orthogonal-right-comp : universal-property-orthogonal-maps f h → universal-property-orthogonal-maps f g → universal-property-orthogonal-maps f (h ∘ g) up-orthogonal-right-comp = universal-property-pullback-rectangle-universal-property-pullback-top ( precomp f Z) ( postcomp A h) ( postcomp A g) ( cone-pullback-hom f h) ( cone-pullback-hom f g) is-orthogonal-right-comp : is-orthogonal f h → is-orthogonal f g → is-orthogonal f (h ∘ g) is-orthogonal-right-comp H G = is-orthogonal-is-orthogonal-pullback-condition f (h ∘ g) ( is-orthogonal-pullback-condition-right-comp ( is-orthogonal-pullback-condition-is-orthogonal f h H) ( is-orthogonal-pullback-condition-is-orthogonal f g G)) is-orthogonal-pullback-condition-right-right-factor : is-orthogonal-pullback-condition f h → is-orthogonal-pullback-condition f (h ∘ g) → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-right-right-factor = is-pullback-top-square-is-pullback-rectangle ( precomp f Z) ( postcomp A h) ( postcomp A g) ( cone-pullback-hom f h) ( cone-pullback-hom f g) up-orthogonal-right-right-factor : universal-property-orthogonal-maps f h → universal-property-orthogonal-maps f (h ∘ g) → universal-property-orthogonal-maps f g up-orthogonal-right-right-factor = universal-property-pullback-top-universal-property-pullback-rectangle ( precomp f Z) ( postcomp A h) ( postcomp A g) ( cone-pullback-hom f h) ( cone-pullback-hom f g) is-orthogonal-right-right-factor : is-orthogonal f h → is-orthogonal f (h ∘ g) → is-orthogonal f g is-orthogonal-right-right-factor H HG = is-orthogonal-is-orthogonal-pullback-condition f g ( is-orthogonal-pullback-condition-right-right-factor ( is-orthogonal-pullback-condition-is-orthogonal f h H) ( is-orthogonal-pullback-condition-is-orthogonal f (h ∘ g) HG))
Left orthogonal maps are closed under composition and have the right cancellation property
Given two composable maps h
after f
, if f ⊥ g
, then h ⊥ g
if and only if
(h ∘ f) ⊥ g
.
Proof: By the universal property of orthogonal maps, the right square in the
below diagram is a pullback precisely when f
is left orthogonal to g
:
- ∘ h - ∘ f
C → X -------> B → X -------> A → X
| | ⌟ |
g ∘ - | | | g ∘ -
∨ ∨ ∨
C → Y -------> B → Y -------> A → Y
- ∘ h - ∘ f
so the result is an instance of the horizontal pasting property for pullbacks.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {C : UU l5} (f : A → B) (h : B → C) (g : X → Y) where is-orthogonal-pullback-condition-left-comp : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition h g → is-orthogonal-pullback-condition (h ∘ f) g is-orthogonal-pullback-condition-left-comp = is-pullback-rectangle-is-pullback-left-square ( precomp h Y) ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( cone-pullback-hom h g) up-orthogonal-left-comp : universal-property-orthogonal-maps f g → universal-property-orthogonal-maps h g → universal-property-orthogonal-maps (h ∘ f) g up-orthogonal-left-comp = universal-property-pullback-rectangle-universal-property-pullback-left-square ( precomp h Y) ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( cone-pullback-hom h g) is-orthogonal-left-comp : is-orthogonal f g → is-orthogonal h g → is-orthogonal (h ∘ f) g is-orthogonal-left-comp F H = is-orthogonal-is-orthogonal-pullback-condition (h ∘ f) g ( is-orthogonal-pullback-condition-left-comp ( is-orthogonal-pullback-condition-is-orthogonal f g F) ( is-orthogonal-pullback-condition-is-orthogonal h g H)) is-orthogonal-pullback-condition-left-left-factor : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition (h ∘ f) g → is-orthogonal-pullback-condition h g is-orthogonal-pullback-condition-left-left-factor = is-pullback-left-square-is-pullback-rectangle ( precomp h Y) ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( cone-pullback-hom h g) up-orthogonal-left-left-factor : universal-property-orthogonal-maps f g → universal-property-orthogonal-maps (h ∘ f) g → universal-property-orthogonal-maps h g up-orthogonal-left-left-factor = universal-property-pullback-left-square-universal-property-pullback-rectangle ( precomp h Y) ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( cone-pullback-hom h g) is-orthogonal-left-left-factor : is-orthogonal f g → is-orthogonal (h ∘ f) g → is-orthogonal h g is-orthogonal-left-left-factor F HF = is-orthogonal-is-orthogonal-pullback-condition h g ( is-orthogonal-pullback-condition-left-left-factor ( is-orthogonal-pullback-condition-is-orthogonal f g F) ( is-orthogonal-pullback-condition-is-orthogonal (h ∘ f) g HF))
Right orthogonality is preserved by dependent products
If f ⊥ gᵢ
, for each i : I
, then f ⊥ (map-Π g)
.
Proof: We need to show that the square
- ∘ f
(B → Πᵢ Xᵢ) ---------------> (A → Πᵢ Xᵢ)
| |
| |
map-Π g ∘ - | | map-Π g ∘ -
| |
∨ ∨
(B → Πᵢ Yᵢ) ---------------> (A → Πᵢ Yᵢ)
- ∘ f
is a pullback. By swapping the arguments at each vertex, this square is equivalent to
map-Π (- ∘ f)
(Πᵢ B → Xᵢ) ---------------> (Πᵢ A → Xᵢ)
| |
| |
map-Π (gᵢ ∘ -) | | map-Π (gᵢ ∘ -)
| |
∨ ∨
(Πᵢ B → Yᵢ) ---------------> (Πᵢ A → Yᵢ)
map-Π (- ∘ f)
which is a pullback by assumption since pullbacks are preserved by dependent products.
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : UU l2} {B : UU l3} {X : I → UU l4} {Y : I → UU l5} (f : A → B) (g : (i : I) → X i → Y i) where is-orthogonal-pullback-condition-right-Π : ((i : I) → is-orthogonal-pullback-condition f (g i)) → is-orthogonal-pullback-condition f (map-Π g) is-orthogonal-pullback-condition-right-Π G = is-pullback-bottom-is-pullback-top-cube-is-equiv ( postcomp B (map-Π g)) ( precomp f ((i : I) → X i)) ( precomp f ((i : I) → Y i)) ( postcomp A (map-Π g)) ( map-Π (λ i → postcomp B (g i))) ( map-Π (λ i → precomp f (X i))) ( map-Π (λ i → precomp f (Y i))) ( map-Π (λ i → postcomp A (g i))) ( swap-Π) ( swap-Π) ( swap-Π) ( swap-Π) ( λ _ → eq-htpy refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( ( ap swap-Π) ·l ( eq-htpy-refl-htpy ∘ map-Π (λ i → precomp f (Y i) ∘ postcomp B (g i)))) ( is-equiv-swap-Π) ( is-equiv-swap-Π) ( is-equiv-swap-Π) ( is-equiv-swap-Π) ( is-pullback-Π ( λ i → precomp f (Y i)) ( λ i → postcomp A (g i)) ( λ i → cone-pullback-hom f (g i)) ( G)) is-orthogonal-right-Π : ((i : I) → is-orthogonal f (g i)) → is-orthogonal f (map-Π g) is-orthogonal-right-Π G = is-orthogonal-is-orthogonal-pullback-condition f (map-Π g) ( is-orthogonal-pullback-condition-right-Π ( λ i → is-orthogonal-pullback-condition-is-orthogonal f (g i) (G i)))
Any map that is left orthogonal to a map g
is also left orthogonal to postcomposing by g
If f ⊥ g
then f ⊥ postcomp S g
for every type S
.
Proof: This is a special case of the previous result by taking g
to be
constant over S
.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (S : UU l5) (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition-right-postcomp : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f (postcomp S g) is-orthogonal-pullback-condition-right-postcomp G = is-orthogonal-pullback-condition-right-Π f (λ _ → g) (λ _ → G) is-orthogonal-right-postcomp : is-orthogonal f g → is-orthogonal f (postcomp S g) is-orthogonal-right-postcomp G = is-orthogonal-right-Π f (λ _ → g) (λ _ → G)
Right orthogonality is preserved by products
If f ⊥ g
and f ⊥ g'
, then f ⊥ (g × g')
.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {X' : UU l5} {Y' : UU l6} (f : A → B) (g : X → Y) (g' : X' → Y') where is-orthogonal-pullback-condition-right-product : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f g' → is-orthogonal-pullback-condition f (map-product g g') is-orthogonal-pullback-condition-right-product G G' = is-pullback-top-is-pullback-bottom-cube-is-equiv ( map-product (postcomp B g) (postcomp B g')) ( map-product (precomp f X) (precomp f X')) ( map-product (precomp f Y) (precomp f Y')) ( map-product (postcomp A g) (postcomp A g')) ( postcomp B (map-product g g')) ( precomp f (X × X')) ( precomp f (Y × Y')) ( postcomp A (map-product g g')) ( map-up-product) ( map-up-product) ( map-up-product) ( map-up-product) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( up-product) ( up-product) ( up-product) ( up-product) ( is-pullback-product-is-pullback ( precomp f Y) ( postcomp A g) ( precomp f Y') ( postcomp A g') ( cone-pullback-hom f g) ( cone-pullback-hom f g') ( G) ( G')) is-orthogonal-right-product : is-orthogonal f g → is-orthogonal f g' → is-orthogonal f (map-product g g') is-orthogonal-right-product G G' = is-orthogonal-is-orthogonal-pullback-condition f (map-product g g') ( is-orthogonal-pullback-condition-right-product ( is-orthogonal-pullback-condition-is-orthogonal f g G) ( is-orthogonal-pullback-condition-is-orthogonal f g' G'))
Left orthogonality is preserved by dependent sums
If fᵢ ⊥ g
for every i
, then (tot f) ⊥ g
.
Proof: We need to show that the square
- ∘ (tot f)
((Σ I B) → X) ---------------> ((Σ I A) → X)
| |
| |
g ∘ - | | g ∘ -
| |
∨ ∨
((Σ I B) → Y) ---------------> ((Σ I A) → Y)
- ∘ (tot f)
is a pullback. However, by the universal property of dependent pair types this square is equivalent to
Πᵢ (- ∘ fᵢ)
Πᵢ (Bᵢ → X) -----------> Πᵢ (Aᵢ → X)
| |
| |
Πᵢ (g ∘ -) | | Πᵢ (g ∘ -)
| |
∨ ∨
Πᵢ (Bᵢ → Y) -----------> Πᵢ (Aᵢ → Y),
Πᵢ (- ∘ fᵢ)
which is a pullback by assumption and the fact that pullbacks are preserved under dependent products.
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : UU l4} {Y : UU l5} (f : (i : I) → A i → B i) (g : X → Y) where is-orthogonal-pullback-condition-left-Σ : ((i : I) → is-orthogonal-pullback-condition (f i) g) → is-orthogonal-pullback-condition (tot f) g is-orthogonal-pullback-condition-left-Σ F = is-pullback-top-is-pullback-bottom-cube-is-equiv ( map-Π (λ i → postcomp (B i) g)) ( map-Π (λ i → precomp (f i) X)) ( map-Π (λ i → precomp (f i) Y)) ( map-Π (λ i → postcomp (A i) g)) ( postcomp (Σ I B) g) ( precomp (tot f) X) ( precomp (tot f) Y) ( postcomp (Σ I A) g) ( ev-pair) ( ev-pair) ( ev-pair) ( ev-pair) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( λ _ → eq-htpy refl-htpy) ( inv-htpy ( ( right-unit-htpy) ∙h ( ( eq-htpy-refl-htpy) ·r ( ( map-Π (λ i → precomp (f i) Y)) ∘ ( map-Π (λ i → postcomp (B i) g)) ∘ ( ev-pair))))) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-pullback-Π ( λ i → precomp (f i) Y) ( λ i → postcomp (A i) g) ( λ i → cone-pullback-hom (f i) g) ( F)) is-orthogonal-left-Σ : ((i : I) → is-orthogonal (f i) g) → is-orthogonal (tot f) g is-orthogonal-left-Σ F = is-orthogonal-is-orthogonal-pullback-condition (tot f) g ( is-orthogonal-pullback-condition-left-Σ ( λ i → is-orthogonal-pullback-condition-is-orthogonal (f i) g (F i)))
Left orthogonality is preserved by coproducts
If f ⊥ g
and f' ⊥ g
, then (f + f') ⊥ g
.
Proof: We need to show that the square
- ∘ (f + f')
((B + B') → X) ---------------> ((A + A') → X)
| |
| |
g ∘ - | | g ∘ -
| |
∨ ∨
((B + B') → Y) ---------------> ((A + A') → Y)
- ∘ (f + f')
is a pullback. However, by the universal property of coproducts this square is equivalent to
(- ∘ f) × (- ∘ f')
(B → X) × (B' → X) -----------> (A → X) × (A' → X)
| |
| |
(g ∘ -) × (g ∘ -) | | (g ∘ -) × (g ∘ -)
| |
∨ ∨
(B → Y) × (B' → Y) -----------> (A → Y) × (A' → Y),
(- ∘ f) × (- ∘ f')
which is a pullback by assumption and the fact that pullbacks are preserved under products.
Note: This result can also be obtained as a special case of the previous one by taking the indexing type to be the two-element type.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {A' : UU l3} {B' : UU l4} {X : UU l5} {Y : UU l6} (f : A → B) (f' : A' → B') (g : X → Y) where is-orthogonal-pullback-condition-left-coproduct : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f' g → is-orthogonal-pullback-condition (map-coproduct f f') g is-orthogonal-pullback-condition-left-coproduct F F' = is-pullback-top-is-pullback-bottom-cube-is-equiv ( map-product (postcomp B g) (postcomp B' g)) ( map-product (precomp f X) (precomp f' X)) ( map-product (precomp f Y) (precomp f' Y)) ( map-product (postcomp A g) (postcomp A' g)) ( postcomp (B + B') g) ( precomp (map-coproduct f f') X) ( precomp (map-coproduct f f') Y) ( postcomp (A + A') g) ( ev-inl-inr (λ _ → X)) ( ev-inl-inr (λ _ → Y)) ( ev-inl-inr (λ _ → X)) ( ev-inl-inr (λ _ → Y)) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( universal-property-coproduct X) ( universal-property-coproduct Y) ( universal-property-coproduct X) ( universal-property-coproduct Y) ( is-pullback-product-is-pullback ( precomp f Y) ( postcomp A g) ( precomp f' Y) ( postcomp A' g) ( cone-pullback-hom f g) ( cone-pullback-hom f' g) ( F) ( F')) is-orthogonal-left-coproduct : is-orthogonal f g → is-orthogonal f' g → is-orthogonal (map-coproduct f f') g is-orthogonal-left-coproduct F F' = is-orthogonal-is-orthogonal-pullback-condition (map-coproduct f f') g ( is-orthogonal-pullback-condition-left-coproduct ( is-orthogonal-pullback-condition-is-orthogonal f g F) ( is-orthogonal-pullback-condition-is-orthogonal f' g F'))
Right orthogonality is preserved under base change
Given a pullback square
X' -----> X
| ⌟ |
g'| | g
∨ ∨
Y' -----> Y,
if f ⊥ g
, then f ⊥ g'
.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {X' : UU l5} {Y' : UU l6} (f : A → B) (g : X → Y) (g' : X' → Y') (α : cartesian-hom-arrow g' g) where is-orthogonal-pullback-condition-right-base-change : is-orthogonal-pullback-condition f g → is-orthogonal-pullback-condition f g' is-orthogonal-pullback-condition-right-base-change G = is-pullback-back-right-is-pullback-back-left-cube ( refl-htpy) ( htpy-postcomp B (coh-cartesian-hom-arrow g' g α)) ( refl-htpy) ( refl-htpy) ( htpy-postcomp A (coh-cartesian-hom-arrow g' g α)) ( refl-htpy) ( ( right-unit-htpy) ∙h ( right-unit-htpy) ∙h ( inv-htpy ( commutative-precomp-htpy-postcomp ( f) ( coh-cartesian-hom-arrow g' g α)))) ( G) ( is-pullback-postcomp-is-pullback ( map-codomain-cartesian-hom-arrow g' g α) ( g) ( cone-cartesian-hom-arrow g' g α) ( is-cartesian-cartesian-hom-arrow g' g α) ( A)) ( is-pullback-postcomp-is-pullback ( map-codomain-cartesian-hom-arrow g' g α) ( g) ( cone-cartesian-hom-arrow g' g α) ( is-cartesian-cartesian-hom-arrow g' g α) ( B)) is-orthogonal-right-base-change : is-orthogonal f g → is-orthogonal f g' is-orthogonal-right-base-change G = is-orthogonal-is-orthogonal-pullback-condition f g' ( is-orthogonal-pullback-condition-right-base-change ( is-orthogonal-pullback-condition-is-orthogonal f g G))
A type is f
-local if and only if its terminal map is f
-orthogonal
Proof (forward direction): If the terminal map is right orthogonal to f
,
that means we have a pullback square
- ∘ f
B → X -----> A → X
| ⌟ |
! ∘ - | | ! ∘ -
∨ ∨
B → 1 -----> A → 1.
- ∘ f
which displays precomp f X
as a pullback of an equivalence, hence it is itself
an equivalence.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → B) where is-local-is-orthogonal-pullback-condition-terminal-map : is-orthogonal-pullback-condition f (terminal-map X) → is-local f X is-local-is-orthogonal-pullback-condition-terminal-map = is-equiv-horizontal-map-is-pullback ( precomp f unit) ( postcomp A (terminal-map X)) ( cone-pullback-hom f (terminal-map X)) ( is-local-is-contr f unit is-contr-unit) is-local-is-orthogonal-terminal-map : is-orthogonal f (terminal-map X) → is-local f X is-local-is-orthogonal-terminal-map F = is-local-is-orthogonal-pullback-condition-terminal-map ( is-orthogonal-pullback-condition-is-orthogonal f (terminal-map X) F) is-orthogonal-pullback-condition-terminal-map-is-local : is-local f X → is-orthogonal-pullback-condition f (terminal-map X) is-orthogonal-pullback-condition-terminal-map-is-local = is-pullback-is-equiv-horizontal-maps ( precomp f unit) ( postcomp A (terminal-map X)) ( cone-pullback-hom f (terminal-map X)) ( is-local-is-contr f unit is-contr-unit) is-orthogonal-terminal-map-is-local : is-local f X → is-orthogonal f (terminal-map X) is-orthogonal-terminal-map-is-local F = is-orthogonal-is-orthogonal-pullback-condition f (terminal-map X) ( is-orthogonal-pullback-condition-terminal-map-is-local F)
If the codomain of g
is f
-local, then g
is f
-orthogonal if and only if the domain of g
is f
-local
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-orthogonal-pullback-condition-is-local-domain-is-local-codomain : is-local f Y → is-local f X → is-orthogonal-pullback-condition f g is-orthogonal-pullback-condition-is-local-domain-is-local-codomain = is-pullback-is-equiv-horizontal-maps ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) is-orthogonal-is-local-domain-is-local-codomain : is-local f Y → is-local f X → is-orthogonal f g is-orthogonal-is-local-domain-is-local-codomain H K = is-orthogonal-is-orthogonal-pullback-condition f g ( is-orthogonal-pullback-condition-is-local-domain-is-local-codomain H K) is-local-domain-is-orthogonal-pullback-condition-is-local-codomain : is-local f Y → is-orthogonal-pullback-condition f g → is-local f X is-local-domain-is-orthogonal-pullback-condition-is-local-codomain H G = is-local-is-orthogonal-pullback-condition-terminal-map f ( is-orthogonal-pullback-condition-right-comp f g (terminal-map Y) ( is-orthogonal-pullback-condition-terminal-map-is-local f H) ( G)) is-local-domain-is-orthogonal-is-local-codomain : is-local f Y → is-orthogonal f g → is-local f X is-local-domain-is-orthogonal-is-local-codomain H G = is-local-domain-is-orthogonal-pullback-condition-is-local-codomain H ( is-orthogonal-pullback-condition-is-orthogonal f g G)
References
- [BW23]
- Ulrik Buchholtz and Jonathan Weinberger. Synthetic fibered -category theory. Higher Structures, 7:74–165, 05 2023. arXiv:2105.01724, doi:10.21136/HS.2023.04.
Recent changes
- 2024-06-04. Fredrik Bakke. Fiberwise orthogonal maps and closure properties of the right class (#1152).
- 2024-05-23. Fredrik Bakke. Null maps, null types and null type families (#1088).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-03-09. Fredrik Bakke. Associativity of pullbacks (#1054).