Discrete dependent reflexive graphs

Content created by Egbert Rijke.

Created on 2024-12-03.
Last modified on 2024-12-03.

module graph-theory.discrete-dependent-reflexive-graphs where
Imports
open import foundation.propositions
open import foundation.universe-levels

open import graph-theory.dependent-reflexive-graphs
open import graph-theory.discrete-reflexive-graphs
open import graph-theory.reflexive-graphs

Idea

A dependent reflexive graph H over a reflexive graph is said to be discrete if the dependent edge relation

  H₁ (refl G x) y : H₀ x → Type

is torsorial for every element y : H₀ x. That is, the dependent reflexive graph H is discrete precisely when the reflexive graph

  ev-point H x

is discrete for every vertex x : G₀. Furthermore, a dependent reflexive graph is discrete precisely when the dependent edge relation

  H₁ e y : H₀ x' → Type

is torsorial for every edge e : G₁ x x' and every element y : H₀ x.

Definitions

The predicate of being a discrete dependent reflexive graph

module _
  {l1 l2 l3 l4 : Level} {G : Reflexive-Graph l1 l2}
  (H : Dependent-Reflexive-Graph l3 l4 G)
  where

  is-discrete-prop-Dependent-Reflexive-Graph : Prop (l1  l3  l4)
  is-discrete-prop-Dependent-Reflexive-Graph =
    Π-Prop
      ( vertex-Reflexive-Graph G)
      ( λ x 
        is-discrete-prop-Reflexive-Graph
          ( ev-point-Dependent-Reflexive-Graph H x))

  is-discrete-Dependent-Reflexive-Graph : UU (l1  l3  l4)
  is-discrete-Dependent-Reflexive-Graph =
    type-Prop is-discrete-prop-Dependent-Reflexive-Graph

  is-prop-is-discrete-Dependent-Reflexive-Graph :
    is-prop is-discrete-Dependent-Reflexive-Graph
  is-prop-is-discrete-Dependent-Reflexive-Graph =
    is-prop-type-Prop is-discrete-prop-Dependent-Reflexive-Graph

Recent changes