Discrete dependent reflexive graphs
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
module graph-theory.discrete-dependent-reflexive-graphs where
Imports
open import foundation.propositions open import foundation.universe-levels open import graph-theory.dependent-reflexive-graphs open import graph-theory.discrete-reflexive-graphs open import graph-theory.reflexive-graphs
Idea
A dependent reflexive graph H
over a reflexive graph is said to be
discrete¶
if the dependent edge relation
H₁ (refl G x) y : H₀ x → Type
is torsorial for every element
y : H₀ x
. That is, the dependent reflexive graph H
is discrete precisely
when the reflexive graph
ev-point H x
is discrete for every vertex
x : G₀
. Furthermore, a dependent reflexive graph is discrete precisely when
the dependent edge relation
H₁ e y : H₀ x' → Type
is torsorial for every edge e : G₁ x x'
and every element y : H₀ x
.
Definitions
The predicate of being a discrete dependent reflexive graph
module _ {l1 l2 l3 l4 : Level} {G : Reflexive-Graph l1 l2} (H : Dependent-Reflexive-Graph l3 l4 G) where is-discrete-prop-Dependent-Reflexive-Graph : Prop (l1 ⊔ l3 ⊔ l4) is-discrete-prop-Dependent-Reflexive-Graph = Π-Prop ( vertex-Reflexive-Graph G) ( λ x → is-discrete-prop-Reflexive-Graph ( ev-point-Dependent-Reflexive-Graph H x)) is-discrete-Dependent-Reflexive-Graph : UU (l1 ⊔ l3 ⊔ l4) is-discrete-Dependent-Reflexive-Graph = type-Prop is-discrete-prop-Dependent-Reflexive-Graph is-prop-is-discrete-Dependent-Reflexive-Graph : is-prop is-discrete-Dependent-Reflexive-Graph is-prop-is-discrete-Dependent-Reflexive-Graph = is-prop-type-Prop is-discrete-prop-Dependent-Reflexive-Graph
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).