Connected set bundles over the circle
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-28.
Last modified on 2023-11-24.
module synthetic-homotopy-theory.connected-set-bundles-circle where
Imports
open import foundation.0-connected-types open import foundation.automorphisms open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.inhabited-types open import foundation.mere-equality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.surjective-maps open import foundation.transport-along-identifications open import foundation.universe-levels open import higher-group-theory.transitive-higher-group-actions open import structured-types.sets-equipped-with-automorphisms open import synthetic-homotopy-theory.circle
Idea
A connected set bundle over the
circle is a family of sets X : 𝕊¹ → Set
such that the total space Σ 𝕊¹ (type-Set ∘ X)
is
connected. The connected set bundles over the
circle form a large category, which can
be thought of as the categorification of the poset of
natural numbers ordered by divisibility.
Definitions
The predicate of being a connected set bundle over the circle
is-connected-prop-set-bundle-𝕊¹ : {l : Level} → (𝕊¹ → Set l) → Prop l is-connected-prop-set-bundle-𝕊¹ X = is-0-connected-Prop (Σ 𝕊¹ (type-Set ∘ X)) is-connected-set-bundle-𝕊¹ : {l : Level} (X : 𝕊¹ → Set l) → UU l is-connected-set-bundle-𝕊¹ X = type-Prop (is-connected-prop-set-bundle-𝕊¹ X) is-prop-is-connected-set-bundle-𝕊¹ : {l : Level} (X : 𝕊¹ → Set l) → is-prop (is-connected-set-bundle-𝕊¹ X) is-prop-is-connected-set-bundle-𝕊¹ X = is-prop-type-Prop (is-connected-prop-set-bundle-𝕊¹ X)
Connected set bundles over the circle
connected-set-bundle-𝕊¹ : (l : Level) → UU (lsuc l) connected-set-bundle-𝕊¹ l = type-subtype is-connected-prop-set-bundle-𝕊¹ module _ {l : Level} (X : connected-set-bundle-𝕊¹ l) where set-bundle-connected-set-bundle-𝕊¹ : 𝕊¹ → Set l set-bundle-connected-set-bundle-𝕊¹ = pr1 X bundle-connected-set-bundle-𝕊¹ : 𝕊¹ → UU l bundle-connected-set-bundle-𝕊¹ = type-Set ∘ set-bundle-connected-set-bundle-𝕊¹ set-connected-set-bundle-𝕊¹ : Set l set-connected-set-bundle-𝕊¹ = set-bundle-connected-set-bundle-𝕊¹ base-𝕊¹ type-connected-set-bundle-𝕊¹ : UU l type-connected-set-bundle-𝕊¹ = type-Set set-connected-set-bundle-𝕊¹ total-space-connected-set-bundle-𝕊¹ : UU l total-space-connected-set-bundle-𝕊¹ = Σ 𝕊¹ bundle-connected-set-bundle-𝕊¹ is-connected-connected-set-bundle-𝕊¹ : is-connected-set-bundle-𝕊¹ set-bundle-connected-set-bundle-𝕊¹ is-connected-connected-set-bundle-𝕊¹ = pr2 X mere-eq-total-space-connected-set-bundle-𝕊¹ : (x y : total-space-connected-set-bundle-𝕊¹) → mere-eq x y mere-eq-total-space-connected-set-bundle-𝕊¹ = mere-eq-is-0-connected is-connected-connected-set-bundle-𝕊¹ transitive-action-connected-set-bundle-𝕊¹ : transitive-action-∞-Group l 𝕊¹-∞-Group pr1 transitive-action-connected-set-bundle-𝕊¹ = bundle-connected-set-bundle-𝕊¹ pr2 transitive-action-connected-set-bundle-𝕊¹ = is-connected-connected-set-bundle-𝕊¹ is-abstractly-transitive-action-connected-set-bundle-𝕊¹ : is-abstractly-transitive-action-∞-Group ( 𝕊¹-∞-Group) ( bundle-connected-set-bundle-𝕊¹) is-abstractly-transitive-action-connected-set-bundle-𝕊¹ = is-abstractly-transitive-transitive-action-∞-Group ( 𝕊¹-∞-Group) ( transitive-action-connected-set-bundle-𝕊¹) is-inhabited-connected-set-bundle-𝕊¹ : is-inhabited type-connected-set-bundle-𝕊¹ is-inhabited-connected-set-bundle-𝕊¹ = is-inhabited-transitive-action-∞-Group ( 𝕊¹-∞-Group) ( transitive-action-connected-set-bundle-𝕊¹) is-surjective-tr-connected-set-bundle-𝕊¹ : (t : 𝕊¹) (x : type-connected-set-bundle-𝕊¹) → is-surjective (λ (p : base-𝕊¹ = t) → tr bundle-connected-set-bundle-𝕊¹ p x) is-surjective-tr-connected-set-bundle-𝕊¹ = is-surjective-tr-is-abstractly-transitive-action-∞-Group ( 𝕊¹-∞-Group) ( bundle-connected-set-bundle-𝕊¹) ( is-abstractly-transitive-action-connected-set-bundle-𝕊¹) inhabited-type-connected-set-bundle-𝕊¹ : Inhabited-Type l inhabited-type-connected-set-bundle-𝕊¹ = inhabited-type-transitive-action-∞-Group ( 𝕊¹-∞-Group) ( transitive-action-connected-set-bundle-𝕊¹) aut-connected-set-bundle-𝕊¹ : Aut type-connected-set-bundle-𝕊¹ aut-connected-set-bundle-𝕊¹ = equiv-tr bundle-connected-set-bundle-𝕊¹ loop-𝕊¹ map-aut-connected-set-bundle-𝕊¹ : type-connected-set-bundle-𝕊¹ → type-connected-set-bundle-𝕊¹ map-aut-connected-set-bundle-𝕊¹ = map-equiv aut-connected-set-bundle-𝕊¹ set-with-automorphism-connected-set-bundle-𝕊¹ : Set-With-Automorphism l pr1 set-with-automorphism-connected-set-bundle-𝕊¹ = set-connected-set-bundle-𝕊¹ pr2 set-with-automorphism-connected-set-bundle-𝕊¹ = aut-connected-set-bundle-𝕊¹
Properties
Connected set bundles over the circle are cyclic sets
The set equipped with an automorphism obtained from a connected set bundle over the circle is a cyclic set
This remains to be shown.
See also
Table of files related to cyclic types, groups, and rings
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).
- 2023-10-08. Egbert Rijke and Fredrik Bakke. Refactoring types with automorphisms/endomorphisms and descent data for the circle (#812).
- 2023-10-03. Egbert Rijke and Fredrik Bakke. Free and transitive concrete group actions (#810).
- 2023-09-28. Egbert Rijke and Fredrik Bakke. Cyclic types (#800).