Finite types
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Eléonore Mangel, Victor Blanchi and Elisabeth Stenholm.
Created on 2022-02-13.
Last modified on 2024-08-22.
module univalent-combinatorics.finite-types where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.0-connected-types open import foundation.1-types open import foundation.action-on-identifications-functions open import foundation.connected-components-universes open import foundation.contractible-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.identity-types open import foundation.inhabited-types open import foundation.logical-equivalences open import foundation.mere-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.sets open import foundation.subtypes open import foundation.subuniverses open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-arithmetic-empty-type open import foundation.unit-type open import foundation.univalence open import foundation.universe-levels open import foundation-core.torsorial-type-families open import univalent-combinatorics.counting open import univalent-combinatorics.standard-finite-types
Idea
A type is finite¶ if it is merely equivalent to a standard finite type.
Terminology. This finiteness condition is also referred to as Bishop finiteness. (Cf. the external links at the bottom of this page)
Definition
Finite types
is-finite-Prop : {l : Level} → UU l → Prop l is-finite-Prop X = trunc-Prop (count X) is-finite : {l : Level} → UU l → UU l is-finite X = type-Prop (is-finite-Prop X) abstract is-prop-is-finite : {l : Level} (X : UU l) → is-prop (is-finite X) is-prop-is-finite X = is-prop-type-Prop (is-finite-Prop X) abstract is-finite-count : {l : Level} {X : UU l} → count X → is-finite X is-finite-count = unit-trunc-Prop
The type of all finite types of a universe level
𝔽 : (l : Level) → UU (lsuc l) 𝔽 l = Σ (UU l) is-finite type-𝔽 : {l : Level} → 𝔽 l → UU l type-𝔽 = pr1 is-finite-type-𝔽 : {l : Level} (X : 𝔽 l) → is-finite (type-𝔽 X) is-finite-type-𝔽 = pr2
Types with finite cardinality k
has-cardinality-Prop : {l : Level} → ℕ → UU l → Prop l has-cardinality-Prop k = mere-equiv-Prop (Fin k) has-cardinality : {l : Level} → ℕ → UU l → UU l has-cardinality k = mere-equiv (Fin k)
The type of all types of cardinality k
of a given universe level
UU-Fin : (l : Level) → ℕ → UU (lsuc l) UU-Fin l k = Σ (UU l) (mere-equiv (Fin k)) type-UU-Fin : {l : Level} (k : ℕ) → UU-Fin l k → UU l type-UU-Fin k = pr1 abstract has-cardinality-type-UU-Fin : {l : Level} (k : ℕ) (X : UU-Fin l k) → mere-equiv (Fin k) (type-UU-Fin k X) has-cardinality-type-UU-Fin k = pr2
Types of finite cardinality
has-finite-cardinality : {l : Level} → UU l → UU l has-finite-cardinality X = Σ ℕ (λ k → has-cardinality k X) number-of-elements-has-finite-cardinality : {l : Level} {X : UU l} → has-finite-cardinality X → ℕ number-of-elements-has-finite-cardinality = pr1 abstract mere-equiv-has-finite-cardinality : {l : Level} {X : UU l} (c : has-finite-cardinality X) → type-trunc-Prop (Fin (number-of-elements-has-finite-cardinality c) ≃ X) mere-equiv-has-finite-cardinality = pr2
Properties
Finite types are closed under equivalences
abstract is-finite-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-finite A → is-finite B is-finite-equiv e = map-universal-property-trunc-Prop ( is-finite-Prop _) ( is-finite-count ∘ (count-equiv e)) abstract is-finite-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-equiv f → is-finite A → is-finite B is-finite-is-equiv is-equiv-f = map-universal-property-trunc-Prop ( is-finite-Prop _) ( is-finite-count ∘ (count-equiv (pair _ is-equiv-f))) abstract is-finite-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-finite B → is-finite A is-finite-equiv' e = is-finite-equiv (inv-equiv e)
Finite types are closed under mere equivalences
abstract is-finite-mere-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → mere-equiv A B → is-finite A → is-finite B is-finite-mere-equiv e H = apply-universal-property-trunc-Prop e ( is-finite-Prop _) ( λ e' → is-finite-equiv e' H)
The empty type is finite
abstract is-finite-empty : is-finite empty is-finite-empty = is-finite-count count-empty empty-𝔽 : 𝔽 lzero pr1 empty-𝔽 = empty pr2 empty-𝔽 = is-finite-empty empty-UU-Fin : UU-Fin lzero zero-ℕ pr1 empty-UU-Fin = empty pr2 empty-UU-Fin = unit-trunc-Prop id-equiv
The empty type has finite cardinality
has-finite-cardinality-empty : has-finite-cardinality empty pr1 has-finite-cardinality-empty = zero-ℕ pr2 has-finite-cardinality-empty = unit-trunc-Prop id-equiv
Empty types are finite
abstract is-finite-is-empty : {l1 : Level} {X : UU l1} → is-empty X → is-finite X is-finite-is-empty H = is-finite-count (count-is-empty H)
Empty types have finite cardinality
has-finite-cardinality-is-empty : {l1 : Level} {X : UU l1} → is-empty X → has-finite-cardinality X pr1 (has-finite-cardinality-is-empty f) = zero-ℕ pr2 (has-finite-cardinality-is-empty f) = unit-trunc-Prop (equiv-count (count-is-empty f))
The unit type is finite
abstract is-finite-unit : is-finite unit is-finite-unit = is-finite-count count-unit abstract is-finite-raise-unit : {l1 : Level} → is-finite (raise-unit l1) is-finite-raise-unit {l1} = is-finite-equiv (compute-raise-unit l1) is-finite-unit unit-𝔽 : 𝔽 lzero pr1 unit-𝔽 = unit pr2 unit-𝔽 = is-finite-unit unit-UU-Fin : UU-Fin lzero 1 pr1 unit-UU-Fin = unit pr2 unit-UU-Fin = unit-trunc-Prop (left-unit-law-coproduct unit)
Contractible types are finite
abstract is-finite-is-contr : {l1 : Level} {X : UU l1} → is-contr X → is-finite X is-finite-is-contr H = is-finite-count (count-is-contr H) abstract has-cardinality-is-contr : {l1 : Level} {X : UU l1} → is-contr X → has-cardinality 1 X has-cardinality-is-contr H = unit-trunc-Prop (equiv-is-contr is-contr-Fin-one-ℕ H)
The standard finite types are finite
abstract is-finite-Fin : (k : ℕ) → is-finite (Fin k) is-finite-Fin k = is-finite-count (count-Fin k) Fin-𝔽 : ℕ → 𝔽 lzero pr1 (Fin-𝔽 k) = Fin k pr2 (Fin-𝔽 k) = is-finite-Fin k has-cardinality-raise-Fin : {l : Level} (k : ℕ) → has-cardinality k (raise-Fin l k) has-cardinality-raise-Fin {l} k = unit-trunc-Prop (compute-raise-Fin l k) Fin-UU-Fin : (l : Level) (k : ℕ) → UU-Fin l k pr1 (Fin-UU-Fin l k) = raise-Fin l k pr2 (Fin-UU-Fin l k) = has-cardinality-raise-Fin k Fin-UU-Fin' : (k : ℕ) → UU-Fin lzero k pr1 (Fin-UU-Fin' k) = Fin k pr2 (Fin-UU-Fin' k) = unit-trunc-Prop id-equiv
Every type of cardinality k
is finite
abstract is-finite-type-UU-Fin : {l : Level} (k : ℕ) (X : UU-Fin l k) → is-finite (type-UU-Fin k X) is-finite-type-UU-Fin k X = is-finite-mere-equiv ( has-cardinality-type-UU-Fin k X) ( is-finite-Fin k) finite-type-UU-Fin : {l : Level} (k : ℕ) → UU-Fin l k → 𝔽 l pr1 (finite-type-UU-Fin k X) = type-UU-Fin k X pr2 (finite-type-UU-Fin k X) = is-finite-type-UU-Fin k X
Having a finite cardinality is a proposition
abstract all-elements-equal-has-finite-cardinality : {l1 : Level} {X : UU l1} → all-elements-equal (has-finite-cardinality X) all-elements-equal-has-finite-cardinality {l1} {X} (pair k K) (pair l L) = eq-type-subtype ( λ k → mere-equiv-Prop (Fin k) X) ( apply-universal-property-trunc-Prop K ( Id-Prop ℕ-Set k l) ( λ (e : Fin k ≃ X) → apply-universal-property-trunc-Prop L ( Id-Prop ℕ-Set k l) ( λ (f : Fin l ≃ X) → is-equivalence-injective-Fin (inv-equiv f ∘e e)))) abstract is-prop-has-finite-cardinality : {l1 : Level} {X : UU l1} → is-prop (has-finite-cardinality X) is-prop-has-finite-cardinality = is-prop-all-elements-equal all-elements-equal-has-finite-cardinality has-finite-cardinality-Prop : {l1 : Level} (X : UU l1) → Prop l1 pr1 (has-finite-cardinality-Prop X) = has-finite-cardinality X pr2 (has-finite-cardinality-Prop X) = is-prop-has-finite-cardinality
A type has a finite cardinality if and only if it is finite
module _ {l : Level} {X : UU l} where abstract is-finite-has-finite-cardinality : has-finite-cardinality X → is-finite X is-finite-has-finite-cardinality (pair k K) = apply-universal-property-trunc-Prop K ( is-finite-Prop X) ( is-finite-count ∘ pair k) abstract is-finite-has-cardinality : (k : ℕ) → has-cardinality k X → is-finite X is-finite-has-cardinality k H = is-finite-has-finite-cardinality (pair k H) has-finite-cardinality-count : count X → has-finite-cardinality X pr1 (has-finite-cardinality-count e) = number-of-elements-count e pr2 (has-finite-cardinality-count e) = unit-trunc-Prop (equiv-count e) abstract has-finite-cardinality-is-finite : is-finite X → has-finite-cardinality X has-finite-cardinality-is-finite = map-universal-property-trunc-Prop ( has-finite-cardinality-Prop X) ( has-finite-cardinality-count) number-of-elements-is-finite : is-finite X → ℕ number-of-elements-is-finite = number-of-elements-has-finite-cardinality ∘ has-finite-cardinality-is-finite abstract mere-equiv-is-finite : (f : is-finite X) → mere-equiv (Fin (number-of-elements-is-finite f)) X mere-equiv-is-finite f = mere-equiv-has-finite-cardinality (has-finite-cardinality-is-finite f) abstract compute-number-of-elements-is-finite : (e : count X) (f : is-finite X) → Id (number-of-elements-count e) (number-of-elements-is-finite f) compute-number-of-elements-is-finite e f = ind-trunc-Prop ( λ g → Id-Prop ℕ-Set ( number-of-elements-count e) ( number-of-elements-is-finite g)) ( λ g → ( is-equivalence-injective-Fin ( inv-equiv (equiv-count g) ∘e equiv-count e)) ∙ ( ap pr1 ( eq-is-prop' is-prop-has-finite-cardinality ( has-finite-cardinality-count g) ( has-finite-cardinality-is-finite (unit-trunc-Prop g))))) ( f) has-cardinality-is-finite : (H : is-finite X) → has-cardinality (number-of-elements-is-finite H) X has-cardinality-is-finite H = pr2 (has-finite-cardinality-is-finite H) number-of-elements-𝔽 : {l : Level} → 𝔽 l → ℕ number-of-elements-𝔽 X = number-of-elements-is-finite (is-finite-type-𝔽 X)
If a type has cardinality k
and cardinality l
, then k = l
eq-cardinality : {l1 : Level} {k l : ℕ} {A : UU l1} → has-cardinality k A → has-cardinality l A → Id k l eq-cardinality H K = apply-universal-property-trunc-Prop H ( Id-Prop ℕ-Set _ _) ( λ e → apply-universal-property-trunc-Prop K ( Id-Prop ℕ-Set _ _) ( λ f → is-equivalence-injective-Fin (inv-equiv f ∘e e)))
Any finite type is a set
abstract is-set-is-finite : {l : Level} {X : UU l} → is-finite X → is-set X is-set-is-finite {l} {X} H = apply-universal-property-trunc-Prop H ( is-set-Prop X) ( λ e → is-set-count e) is-set-type-𝔽 : {l : Level} (X : 𝔽 l) → is-set (type-𝔽 X) is-set-type-𝔽 X = is-set-is-finite (is-finite-type-𝔽 X) set-𝔽 : {l : Level} → 𝔽 l → Set l pr1 (set-𝔽 X) = type-𝔽 X pr2 (set-𝔽 X) = is-set-is-finite (is-finite-type-𝔽 X)
Any type of cardinality k
is a set
is-set-has-cardinality : {l1 : Level} {X : UU l1} (k : ℕ) → has-cardinality k X → is-set X is-set-has-cardinality k H = is-set-mere-equiv' H (is-set-Fin k) is-set-type-UU-Fin : {l : Level} (k : ℕ) (X : UU-Fin l k) → is-set (type-UU-Fin k X) is-set-type-UU-Fin k X = is-set-has-cardinality k (has-cardinality-type-UU-Fin k X) set-UU-Fin : {l1 : Level} (k : ℕ) → UU-Fin l1 k → Set l1 pr1 (set-UU-Fin k X) = type-UU-Fin k X pr2 (set-UU-Fin k X) = is-set-type-UU-Fin k X
A finite type is empty if and only if it has 0 elements
abstract is-empty-is-zero-number-of-elements-is-finite : {l1 : Level} {X : UU l1} (f : is-finite X) → is-zero-ℕ (number-of-elements-is-finite f) → is-empty X is-empty-is-zero-number-of-elements-is-finite {l1} {X} f p = apply-universal-property-trunc-Prop f ( is-empty-Prop X) ( λ e → is-empty-is-zero-number-of-elements-count e ( compute-number-of-elements-is-finite e f ∙ p))
A finite type is contractible if and only if it has one element
is-one-number-of-elements-is-finite-is-contr : {l : Level} {X : UU l} (H : is-finite X) → is-contr X → is-one-ℕ (number-of-elements-is-finite H) is-one-number-of-elements-is-finite-is-contr H K = eq-cardinality ( has-cardinality-is-finite H) ( has-cardinality-is-contr K) is-contr-is-one-number-of-elements-is-finite : {l : Level} {X : UU l} (H : is-finite X) → is-one-ℕ (number-of-elements-is-finite H) → is-contr X is-contr-is-one-number-of-elements-is-finite H p = apply-universal-property-trunc-Prop H ( is-contr-Prop _) ( λ e → is-contr-equiv' ( Fin 1) ( ( equiv-count e) ∘e ( equiv-tr Fin ( inv p ∙ inv (compute-number-of-elements-is-finite e H)))) ( is-contr-Fin-one-ℕ)) is-decidable-is-contr-is-finite : {l : Level} {X : UU l} (H : is-finite X) → is-decidable (is-contr X) is-decidable-is-contr-is-finite H = is-decidable-iff ( is-contr-is-one-number-of-elements-is-finite H) ( is-one-number-of-elements-is-finite-is-contr H) ( has-decidable-equality-ℕ (number-of-elements-is-finite H) 1)
The type of all pairs consisting of a natural number k
and a type of cardinality k
is equivalent to the type of all finite types
map-compute-total-UU-Fin : {l : Level} → Σ ℕ (UU-Fin l) → 𝔽 l pr1 (map-compute-total-UU-Fin (pair k (pair X e))) = X pr2 (map-compute-total-UU-Fin (pair k (pair X e))) = is-finite-has-finite-cardinality (pair k e) compute-total-UU-Fin : {l : Level} → Σ ℕ (UU-Fin l) ≃ 𝔽 l compute-total-UU-Fin = ( equiv-tot ( λ X → equiv-iff-is-prop ( is-prop-has-finite-cardinality) ( is-prop-is-finite X) ( is-finite-has-finite-cardinality) ( has-finite-cardinality-is-finite))) ∘e ( equiv-left-swap-Σ)
Finite types are either inhabited or empty
is-inhabited-or-empty-is-finite : {l1 : Level} {A : UU l1} → is-finite A → is-inhabited-or-empty A is-inhabited-or-empty-is-finite {l1} {A} f = apply-universal-property-trunc-Prop f ( is-inhabited-or-empty-Prop A) ( is-inhabited-or-empty-count)
Finite types of cardinality greater than one are inhabited
is-inhabited-type-UU-Fin-succ-ℕ : {l1 : Level} (n : ℕ) (A : UU-Fin l1 (succ-ℕ n)) → is-inhabited (type-UU-Fin (succ-ℕ n) A) is-inhabited-type-UU-Fin-succ-ℕ n A = apply-universal-property-trunc-Prop ( pr2 A) ( is-inhabited-Prop (type-UU-Fin (succ-ℕ n) A)) ( λ e → unit-trunc-Prop (map-equiv e (zero-Fin n)))
If X
is finite, then its propositional truncation is decidable
is-decidable-type-trunc-Prop-is-finite : {l1 : Level} {A : UU l1} → is-finite A → is-decidable (type-trunc-Prop A) is-decidable-type-trunc-Prop-is-finite H = map-coproduct ( id) ( map-universal-property-trunc-Prop empty-Prop) ( is-inhabited-or-empty-is-finite H)
If a type is finite, then its propositional truncation is finite
abstract is-finite-type-trunc-Prop : {l1 : Level} {A : UU l1} → is-finite A → is-finite (type-trunc-Prop A) is-finite-type-trunc-Prop = map-trunc-Prop count-type-trunc-Prop trunc-Prop-𝔽 : {l : Level} → 𝔽 l → 𝔽 l pr1 (trunc-Prop-𝔽 A) = type-trunc-Prop (type-𝔽 A) pr2 (trunc-Prop-𝔽 A) = is-finite-type-trunc-Prop (is-finite-type-𝔽 A)
We characterize the identity type of 𝔽
equiv-𝔽 : {l1 l2 : Level} → 𝔽 l1 → 𝔽 l2 → UU (l1 ⊔ l2) equiv-𝔽 X Y = type-𝔽 X ≃ type-𝔽 Y id-equiv-𝔽 : {l : Level} → (X : 𝔽 l) → equiv-𝔽 X X id-equiv-𝔽 X = id-equiv extensionality-𝔽 : {l : Level} → (X Y : 𝔽 l) → Id X Y ≃ equiv-𝔽 X Y extensionality-𝔽 = extensionality-subuniverse is-finite-Prop is-torsorial-equiv-𝔽 : {l : Level} → (X : 𝔽 l) → is-torsorial (λ (Y : 𝔽 l) → equiv-𝔽 X Y) is-torsorial-equiv-𝔽 {l} X = is-contr-equiv' ( Σ (𝔽 l) (Id X)) ( equiv-tot (extensionality-𝔽 X)) ( is-torsorial-Id X) equiv-eq-𝔽 : {l : Level} → (X Y : 𝔽 l) → Id X Y → equiv-𝔽 X Y equiv-eq-𝔽 X Y = map-equiv (extensionality-𝔽 X Y) eq-equiv-𝔽 : {l : Level} → (X Y : 𝔽 l) → equiv-𝔽 X Y → Id X Y eq-equiv-𝔽 X Y = map-inv-equiv (extensionality-𝔽 X Y)
We characterize the identity type of families of finite types
equiv-fam-𝔽 : {l1 l2 : Level} {X : UU l1} (Y Z : X → 𝔽 l2) → UU (l1 ⊔ l2) equiv-fam-𝔽 Y Z = equiv-fam (type-𝔽 ∘ Y) (type-𝔽 ∘ Z) id-equiv-fam-𝔽 : {l1 l2 : Level} {X : UU l1} → (Y : X → 𝔽 l2) → equiv-fam-𝔽 Y Y id-equiv-fam-𝔽 Y x = id-equiv extensionality-fam-𝔽 : {l1 l2 : Level} {X : UU l1} (Y Z : X → 𝔽 l2) → Id Y Z ≃ equiv-fam-𝔽 Y Z extensionality-fam-𝔽 = extensionality-fam-subuniverse is-finite-Prop
We characterize the identity type of UU-Fin
equiv-UU-Fin : {l1 l2 : Level} (k : ℕ) → UU-Fin l1 k → UU-Fin l2 k → UU (l1 ⊔ l2) equiv-UU-Fin k X Y = type-UU-Fin k X ≃ type-UU-Fin k Y id-equiv-UU-Fin : {l : Level} {k : ℕ} (X : UU-Fin l k) → equiv-UU-Fin k X X id-equiv-UU-Fin X = id-equiv-component-UU-Level X equiv-eq-UU-Fin : {l : Level} (k : ℕ) {X Y : UU-Fin l k} → Id X Y → equiv-UU-Fin k X Y equiv-eq-UU-Fin k p = equiv-eq-component-UU-Level p abstract is-torsorial-equiv-UU-Fin : {l : Level} {k : ℕ} (X : UU-Fin l k) → is-torsorial (λ (Y : UU-Fin l k) → equiv-UU-Fin k X Y) is-torsorial-equiv-UU-Fin {l} {k} X = is-torsorial-equiv-component-UU-Level X abstract is-equiv-equiv-eq-UU-Fin : {l : Level} (k : ℕ) (X Y : UU-Fin l k) → is-equiv (equiv-eq-UU-Fin k {X = X} {Y}) is-equiv-equiv-eq-UU-Fin k X = is-equiv-equiv-eq-component-UU-Level X eq-equiv-UU-Fin : {l : Level} (k : ℕ) (X Y : UU-Fin l k) → equiv-UU-Fin k X Y → Id X Y eq-equiv-UU-Fin k X Y = eq-equiv-component-UU-Level X Y equiv-equiv-eq-UU-Fin : {l : Level} (k : ℕ) (X Y : UU-Fin l k) → Id X Y ≃ equiv-UU-Fin k X Y pr1 (equiv-equiv-eq-UU-Fin k X Y) = equiv-eq-UU-Fin k pr2 (equiv-equiv-eq-UU-Fin k X Y) = is-equiv-equiv-eq-UU-Fin k X Y
The type UU-Fin l k
is a 1-type
is-1-type-UU-Fin : {l : Level} (k : ℕ) → is-1-type (UU-Fin l k) is-1-type-UU-Fin k X Y = is-set-equiv ( equiv-UU-Fin k X Y) ( equiv-equiv-eq-UU-Fin k X Y) ( is-set-equiv-is-set ( is-set-type-UU-Fin k X) ( is-set-type-UU-Fin k Y)) UU-Fin-1-Type : (l : Level) (k : ℕ) → 1-Type (lsuc l) pr1 (UU-Fin-1-Type l k) = UU-Fin l k pr2 (UU-Fin-1-Type l k) = is-1-type-UU-Fin k
The type UU-Fin
is connected
abstract is-0-connected-UU-Fin : {l : Level} (n : ℕ) → is-0-connected (UU-Fin l n) is-0-connected-UU-Fin {l} n = is-0-connected-mere-eq ( Fin-UU-Fin l n) ( λ A → map-trunc-Prop ( ( eq-equiv-UU-Fin n (Fin-UU-Fin l n) A) ∘ ( map-equiv ( equiv-precomp-equiv ( inv-equiv (compute-raise l (Fin n))) ( type-UU-Fin n A)))) ( pr2 A))
equiv-has-cardinality-id-number-of-elements-is-finite : {l : Level} (X : UU l) ( H : is-finite X) (n : ℕ) → ( has-cardinality n X ≃ Id (number-of-elements-is-finite H) n) pr1 (equiv-has-cardinality-id-number-of-elements-is-finite X H n) Q = ap ( number-of-elements-has-finite-cardinality) ( all-elements-equal-has-finite-cardinality ( has-finite-cardinality-is-finite H) ( pair n Q)) pr2 (equiv-has-cardinality-id-number-of-elements-is-finite X H n) = is-equiv-has-converse-is-prop ( is-prop-type-trunc-Prop) ( is-set-ℕ (number-of-elements-is-finite H) n) ( λ p → tr ( λ m → has-cardinality m X) ( p) ( pr2 (has-finite-cardinality-is-finite H)))
External links
- Finite set at Mathswitch
- Finiteness in Sheaf Topoi, blog post by Chris Grossack
Fin.Bishop
at TypeTopology- finite set at Lab
- finite object at Lab
- Finite set at Wikipedia
- Finite set at Wikidata
Recent changes
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2024-01-28. Fredrik Bakke. Equivalence injective type families (#1009).