Strict inequality on positive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module elementary-number-theory.strict-inequality-positive-rational-numbers where
Imports
open import elementary-number-theory.inequality-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import order-theory.strict-preorders open import order-theory.strictly-preordered-sets
Idea
The standard strict ordering¶ on the positive rational numbers is inherited from the standard strict ordering on rational numbers.
Definition
le-prop-ℚ⁺ : ℚ⁺ → ℚ⁺ → Prop lzero le-prop-ℚ⁺ x y = le-ℚ-Prop (rational-ℚ⁺ x) (rational-ℚ⁺ y) le-ℚ⁺ : ℚ⁺ → ℚ⁺ → UU lzero le-ℚ⁺ x y = type-Prop (le-prop-ℚ⁺ x y) is-prop-le-ℚ⁺ : (x y : ℚ⁺) → is-prop (le-ℚ⁺ x y) is-prop-le-ℚ⁺ x y = is-prop-type-Prop (le-prop-ℚ⁺ x y)
Properties
Strict inequality is transitive
transitive-le-ℚ⁺ : is-transitive le-ℚ⁺ transitive-le-ℚ⁺ x y z = transitive-le-ℚ (rational-ℚ⁺ x) (rational-ℚ⁺ y) (rational-ℚ⁺ z)
If a < b
, then a ≤ b
leq-le-ℚ⁺ : {x y : ℚ⁺} → le-ℚ⁺ x y → leq-ℚ⁺ x y leq-le-ℚ⁺ {x} {y} = leq-le-ℚ {rational-ℚ⁺ x} {rational-ℚ⁺ y}
The strictly preordered set of positive rational numbers
strictly-preordered-set-ℚ⁺ : Strictly-Preordered-Set lzero lzero pr1 strictly-preordered-set-ℚ⁺ = set-ℚ⁺ pr2 strictly-preordered-set-ℚ⁺ = ( le-prop-ℚ⁺) , ( irreflexive-le-ℚ ∘ rational-ℚ⁺) , ( transitive-le-ℚ⁺) strict-preorder-ℚ⁺ : Strict-Preorder lzero lzero strict-preorder-ℚ⁺ = strict-preorder-Strictly-Preordered-Set strictly-preordered-set-ℚ⁺
There is no least positive rational number
opaque mediant-zero-ℚ⁺ : ℚ⁺ → ℚ⁺ mediant-zero-ℚ⁺ x = ( mediant-ℚ zero-ℚ (rational-ℚ⁺ x) , is-positive-le-zero-ℚ ( mediant-ℚ zero-ℚ (rational-ℚ⁺ x)) ( le-left-mediant-ℚ ( zero-ℚ) ( rational-ℚ⁺ x) ( le-zero-is-positive-ℚ (rational-ℚ⁺ x) (is-positive-rational-ℚ⁺ x)))) le-mediant-zero-ℚ⁺ : (x : ℚ⁺) → le-ℚ⁺ (mediant-zero-ℚ⁺ x) x le-mediant-zero-ℚ⁺ x = le-right-mediant-ℚ ( zero-ℚ) ( rational-ℚ⁺ x) ( le-zero-is-positive-ℚ (rational-ℚ⁺ x) (is-positive-rational-ℚ⁺ x))
Recent changes
- 2025-10-04. Louis Wasserman. Split out operations on positive rational numbers (#1562).