Dependent sums of cardinals
Content created by Fredrik Bakke.
Created on 2026-02-16.
Last modified on 2026-02-16.
module set-theory.dependent-sums-cardinals where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-set-truncation open import foundation.identity-types open import foundation.inhabited-types open import foundation.mere-embeddings open import foundation.projective-types open import foundation.set-truncations open import foundation.sets open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.propositions open import set-theory.cardinality-projective-sets open import set-theory.cardinality-recursive-sets open import set-theory.cardinals open import set-theory.inequality-cardinals open import set-theory.inhabited-cardinals
Idea
Given a family of cardinals over a cardinality-recursive set , then we may define the dependent sum cardinal¶ , as the cardinality of the dependent sum of any family of representing sets .
Definitions
The cardinality of a dependent sum of sets
module _ {l1 l2 : Level} (X : Set l1) where cardinality-Σ : (type-Set X → Set l2) → Cardinal (l1 ⊔ l2) cardinality-Σ Y = cardinality (Σ-Set X Y)
Dependent sums of cardinals over cardinality-recursive sets
module _ {l1 l2 : Level} (X : Cardinality-Recursive-Set l1 l2) (let set-X = set-Cardinality-Recursive-Set X) (let type-X = type-Cardinality-Recursive-Set X) where Σ-Cardinal' : (type-X → Cardinal l2) → Cardinal (l1 ⊔ l2) Σ-Cardinal' K = map-trunc-Set (Σ-Set set-X) (unit-Cardinality-Recursive-Set X K) compute-Σ-Cardinal' : (Y : type-X → Set l2) → Σ-Cardinal' (cardinality ∘ Y) = cardinality (Σ-Set set-X Y) compute-Σ-Cardinal' Y = equational-reasoning Σ-Cardinal' (cardinality ∘ Y) = map-trunc-Set (Σ-Set set-X) (unit-trunc-Set Y) by ap ( map-trunc-Set (Σ-Set set-X)) ( compute-unit-Cardinality-Recursive-Set X Y) = cardinality (Σ-Set set-X Y) by naturality-unit-trunc-Set (Σ-Set set-X) Y
Dependent sums of cardinals over cardinality-projective sets
module _ {l1 l2 : Level} (X : Cardinality-Projective-Set l1 l2) where Σ-Cardinal : (type-Cardinality-Projective-Set X → Cardinal l2) → Cardinal (l1 ⊔ l2) Σ-Cardinal = Σ-Cardinal' (cardinality-recursive-set-Cardinality-Projective-Set X) compute-Σ-Cardinal : (Y : type-Cardinality-Projective-Set X → Set l2) → Σ-Cardinal (cardinality ∘ Y) = cardinality (Σ-Set (set-Cardinality-Projective-Set X) Y) compute-Σ-Cardinal = compute-Σ-Cardinal' (cardinality-recursive-set-Cardinality-Projective-Set X)
Properties
Dependent sums of inhabited cardinals are inhabited
module _ {l1 l2 : Level} (X : Cardinality-Projective-Set l1 l2) (let type-X = type-Cardinality-Projective-Set X) (|x| : is-inhabited type-X) where is-inhabited-Σ-Cardinal : (K : type-X → Cardinal l2) → ((x : type-X) → is-inhabited-Cardinal (K x)) → is-inhabited-Cardinal (Σ-Cardinal X K) is-inhabited-Σ-Cardinal = ind-Cardinality-Projective-Set X ( λ K → set-Prop ( function-Prop ( (x : type-X) → is-inhabited-Cardinal (K x)) ( is-inhabited-prop-Cardinal (Σ-Cardinal X K)))) ( λ Y y → inv-tr ( is-inhabited-Cardinal) ( compute-Σ-Cardinal X Y) ( unit-is-inhabited-cardinality ( Σ-Set (set-Cardinality-Projective-Set X) Y) ( is-inhabited-Σ ( |x|) ( λ x → inv-unit-is-inhabited-cardinality (Y x) (y x))))) Σ-Inhabited-Cardinal : (type-X → Inhabited-Cardinal l2) → Inhabited-Cardinal (l1 ⊔ l2) Σ-Inhabited-Cardinal K = ( Σ-Cardinal X (pr1 ∘ K) , is-inhabited-Σ-Cardinal (pr1 ∘ K) (pr2 ∘ K))
Inequality of cardinalities is preserved under dependent sums over projective types
module _ {l1 l2 : Level} (X : Set l1) (is-projective-X : is-projective-Level' l2 (type-Set X)) where leq-cardinality-Σ : (K P : type-Set X → Set l2) → ((i : type-Set X) → leq-cardinality (K i) (P i)) → leq-cardinality (Σ-Set X K) (Σ-Set X P) leq-cardinality-Σ K P f = unit-leq-cardinality ( Σ-Set X K) ( Σ-Set X P) ( mere-emb-tot ( is-projective-X) ( λ x → inv-unit-leq-cardinality (K x) (P x) (f x)))
Recent changes
- 2026-02-16. Fredrik Bakke. Dependent sums and products of cardinals (#1604).