Representations of monoids in precategories
Content created by Fredrik Bakke.
Created on 2023-09-15.
Last modified on 2023-09-15.
module group-theory.representations-monoids-precategories where
Imports
open import category-theory.endomorphisms-in-precategories open import category-theory.functors-precategories open import category-theory.one-object-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import group-theory.monoids
Idea
A representation of a monoid M
in a
precategory C
consist of an object V
in
C
equipped with a
monoid homomorphism from M
to the
monoid of endomorphisms on
V
. However, since
monoids are one-object precategories,
we can encode this as a functor of categories M → C
.
Definition
Representations of a monoid in a precategory
representation-precategory-Monoid : {l1 l2 l3 : Level} (M : Monoid l1) (C : Precategory l2 l3) → UU (l1 ⊔ l2 ⊔ l3) representation-precategory-Monoid M C = functor-Precategory (precategory-one-object-precategory-Monoid M) C module _ {l1 l2 l3 : Level} (M : Monoid l1) (C : Precategory l2 l3) (ρ : representation-precategory-Monoid M C) where obj-representation-precategory-Monoid : obj-Precategory C obj-representation-precategory-Monoid = pr1 ρ star action-representation-precategory-Monoid : type-Monoid M → type-endo-Precategory C obj-representation-precategory-Monoid action-representation-precategory-Monoid = pr1 (pr2 ρ) preserves-mul-action-representation-precategory-Monoid : ( x y : type-Monoid M) → ( action-representation-precategory-Monoid (mul-Monoid M x y)) = ( comp-endo-Precategory C ( obj-representation-precategory-Monoid) ( action-representation-precategory-Monoid x) ( action-representation-precategory-Monoid y)) preserves-mul-action-representation-precategory-Monoid = preserves-comp-functor-Precategory ( precategory-one-object-precategory-Monoid M) C ρ preserves-unit-action-representation-precategory-Monoid : action-representation-precategory-Monoid (unit-Monoid M) = id-endo-Precategory C obj-representation-precategory-Monoid preserves-unit-action-representation-precategory-Monoid = preserves-id-functor-Precategory ( precategory-one-object-precategory-Monoid M) C ρ star
The total type of representations of a monoid
Representation-Precategory-Monoid : {l1 : Level} (M : Monoid l1) (l2 l3 : Level) → UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) Representation-Precategory-Monoid M l2 l3 = Σ (Precategory l2 l3) (representation-precategory-Monoid M) module _ {l1 l2 l3 : Level} (M : Monoid l1) (ρ : Representation-Precategory-Monoid M l2 l3) where precategory-Representation-Precategory-Monoid : Precategory l2 l3 precategory-Representation-Precategory-Monoid = pr1 ρ representation-precategory-Representation-Precategory-Monoid : representation-precategory-Monoid M ( precategory-Representation-Precategory-Monoid) representation-precategory-Representation-Precategory-Monoid = pr2 ρ obj-Representation-Precategory-Monoid : obj-Precategory precategory-Representation-Precategory-Monoid obj-Representation-Precategory-Monoid = obj-representation-precategory-Monoid M ( precategory-Representation-Precategory-Monoid) ( representation-precategory-Representation-Precategory-Monoid) action-Representation-Precategory-Monoid : type-Monoid M → type-endo-Precategory ( precategory-Representation-Precategory-Monoid) ( obj-Representation-Precategory-Monoid) action-Representation-Precategory-Monoid = action-representation-precategory-Monoid M ( precategory-Representation-Precategory-Monoid) ( representation-precategory-Representation-Precategory-Monoid) preserves-mul-action-Representation-Precategory-Monoid : ( x y : type-Monoid M) → ( action-Representation-Precategory-Monoid (mul-Monoid M x y)) = ( comp-endo-Precategory ( precategory-Representation-Precategory-Monoid) ( obj-Representation-Precategory-Monoid) ( action-Representation-Precategory-Monoid x) ( action-Representation-Precategory-Monoid y)) preserves-mul-action-Representation-Precategory-Monoid = preserves-mul-action-representation-precategory-Monoid M ( precategory-Representation-Precategory-Monoid) ( representation-precategory-Representation-Precategory-Monoid) preserves-unit-action-Representation-Precategory-Monoid : action-Representation-Precategory-Monoid (unit-Monoid M) = id-endo-Precategory ( precategory-Representation-Precategory-Monoid) ( obj-Representation-Precategory-Monoid) preserves-unit-action-Representation-Precategory-Monoid = preserves-unit-action-representation-precategory-Monoid M ( precategory-Representation-Precategory-Monoid) ( representation-precategory-Representation-Precategory-Monoid)
Recent changes
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).