Representations of monoids in precategories

Content created by Fredrik Bakke.

Created on 2023-09-15.
Last modified on 2023-09-15.

module group-theory.representations-monoids-precategories where
Imports
open import category-theory.endomorphisms-in-precategories
open import category-theory.functors-precategories
open import category-theory.one-object-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.unit-type
open import foundation.universe-levels

open import group-theory.monoids

Idea

A representation of a monoid M in a precategory C consist of an object V in C equipped with a monoid homomorphism from M to the monoid of endomorphisms on V. However, since monoids are one-object precategories, we can encode this as a functor of categories M → C.

Definition

Representations of a monoid in a precategory

representation-precategory-Monoid :
  {l1 l2 l3 : Level} (M : Monoid l1) (C : Precategory l2 l3)  UU (l1  l2  l3)
representation-precategory-Monoid M C =
  functor-Precategory (precategory-one-object-precategory-Monoid M) C

module _
  {l1 l2 l3 : Level} (M : Monoid l1) (C : Precategory l2 l3)
  (ρ : representation-precategory-Monoid M C)
  where

  obj-representation-precategory-Monoid : obj-Precategory C
  obj-representation-precategory-Monoid = pr1 ρ star

  action-representation-precategory-Monoid :
    type-Monoid M 
    type-endo-Precategory C obj-representation-precategory-Monoid
  action-representation-precategory-Monoid = pr1 (pr2 ρ)

  preserves-mul-action-representation-precategory-Monoid :
    ( x y : type-Monoid M) 
    ( action-representation-precategory-Monoid (mul-Monoid M x y)) 
    ( comp-endo-Precategory C
      ( obj-representation-precategory-Monoid)
      ( action-representation-precategory-Monoid x)
      ( action-representation-precategory-Monoid y))
  preserves-mul-action-representation-precategory-Monoid =
    preserves-comp-functor-Precategory
      ( precategory-one-object-precategory-Monoid M) C ρ

  preserves-unit-action-representation-precategory-Monoid :
    action-representation-precategory-Monoid (unit-Monoid M) 
    id-endo-Precategory C obj-representation-precategory-Monoid
  preserves-unit-action-representation-precategory-Monoid =
    preserves-id-functor-Precategory
      ( precategory-one-object-precategory-Monoid M) C ρ star

The total type of representations of a monoid

Representation-Precategory-Monoid :
  {l1 : Level} (M : Monoid l1) (l2 l3 : Level)  UU (l1  lsuc l2  lsuc l3)
Representation-Precategory-Monoid M l2 l3 =
  Σ (Precategory l2 l3) (representation-precategory-Monoid M)

module _
  {l1 l2 l3 : Level} (M : Monoid l1)
  (ρ : Representation-Precategory-Monoid M l2 l3)
  where

  precategory-Representation-Precategory-Monoid : Precategory l2 l3
  precategory-Representation-Precategory-Monoid = pr1 ρ

  representation-precategory-Representation-Precategory-Monoid :
    representation-precategory-Monoid M
      ( precategory-Representation-Precategory-Monoid)
  representation-precategory-Representation-Precategory-Monoid = pr2 ρ

  obj-Representation-Precategory-Monoid :
    obj-Precategory precategory-Representation-Precategory-Monoid
  obj-Representation-Precategory-Monoid =
    obj-representation-precategory-Monoid M
      ( precategory-Representation-Precategory-Monoid)
      ( representation-precategory-Representation-Precategory-Monoid)

  action-Representation-Precategory-Monoid :
    type-Monoid M 
    type-endo-Precategory
      ( precategory-Representation-Precategory-Monoid)
      ( obj-Representation-Precategory-Monoid)
  action-Representation-Precategory-Monoid =
    action-representation-precategory-Monoid M
      ( precategory-Representation-Precategory-Monoid)
      ( representation-precategory-Representation-Precategory-Monoid)

  preserves-mul-action-Representation-Precategory-Monoid :
    ( x y : type-Monoid M) 
    ( action-Representation-Precategory-Monoid (mul-Monoid M x y)) 
    ( comp-endo-Precategory
      ( precategory-Representation-Precategory-Monoid)
      ( obj-Representation-Precategory-Monoid)
      ( action-Representation-Precategory-Monoid x)
      ( action-Representation-Precategory-Monoid y))
  preserves-mul-action-Representation-Precategory-Monoid =
    preserves-mul-action-representation-precategory-Monoid M
      ( precategory-Representation-Precategory-Monoid)
      ( representation-precategory-Representation-Precategory-Monoid)

  preserves-unit-action-Representation-Precategory-Monoid :
    action-Representation-Precategory-Monoid (unit-Monoid M) 
    id-endo-Precategory
      ( precategory-Representation-Precategory-Monoid)
      ( obj-Representation-Precategory-Monoid)
  preserves-unit-action-Representation-Precategory-Monoid =
    preserves-unit-action-representation-precategory-Monoid M
      ( precategory-Representation-Precategory-Monoid)
      ( representation-precategory-Representation-Precategory-Monoid)

Recent changes