Kernels of linear maps between vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.kernels-linear-maps-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.kernels-linear-maps-left-modules-rings open import linear-algebra.linear-maps-vector-spaces open import linear-algebra.subspaces-vector-spaces open import linear-algebra.vector-spaces
Idea
The kernel¶ of a linear map between vector spaces is the preimage of zero.
Definition
module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (f : linear-map-Vector-Space F V W) where subset-kernel-linear-map-Vector-Space : subtype l3 (type-Vector-Space F V) subset-kernel-linear-map-Vector-Space = subset-kernel-linear-map-left-module-Ring (ring-Heyting-Field F) V W f kernel-linear-map-Vector-Space : subspace-Vector-Space l3 F V kernel-linear-map-Vector-Space = kernel-linear-map-left-module-Ring (ring-Heyting-Field F) V W f subspace-kernel-linear-map-Vector-Space : Vector-Space (l2 ⊔ l3) F subspace-kernel-linear-map-Vector-Space = left-module-kernel-linear-map-left-module-Ring (ring-Heyting-Field F) V W f
See also
External links
- Kernel at Wikidata
- Kernel (linear algebra) on Wikipedia
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).