Definitions

Content created by Fredrik Bakke, Fernando Chu and Vojtěch Štěpančík.

Created on 2023-04-27.
Last modified on 2025-01-19.

module reflection.definitions where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.universe-levels

open import lists.lists

open import reflection.abstractions
open import reflection.arguments
open import reflection.literals
open import reflection.names
open import reflection.terms

Idea

The Definition-Agda type represents a definition in Agda.

Definition

data Definition-Agda : UU lzero where

  function-Definition-Agda :
    list Clause-Agda  Definition-Agda

  data-type-Definition-Agda :
      list Name-Agda  Definition-Agda

  record-type-Definition-Agda :
    Name-Agda  list (Argument-Agda Name-Agda)  Definition-Agda

  data-constructor-Definition-Agda :
    Name-Agda  Quantity-Argument-Agda  Definition-Agda

  postulate-Definition-Agda :
    Definition-Agda

  primitive-function-Definition-Agda :
    Definition-Agda

Bindings

{-# BUILTIN AGDADEFINITION Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function-Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type-Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type-Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-constructor-Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE postulate-Definition-Agda #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE primitive-function-Definition-Agda #-}

Examples

Constructors and definitions

_ : quoteTerm   definition-Term-Agda (quote ) nil
_ = refl

_ :
  quoteTerm (succ-ℕ zero-ℕ) 
  constructor-Term-Agda
    ( quote succ-ℕ)
    ( unit-list
      ( visible-Argument-Agda (constructor-Term-Agda (quote zero-ℕ) nil)))
_ = refl

_ :
  {l : Level} {A : UU l} 
  quoteTerm (type-trunc-Prop A) 
  definition-Term-Agda
    ( quote type-trunc-Prop)
    ( cons
      ( hidden-Argument-Agda (variable-Term-Agda 1 nil))
      ( unit-list (visible-Argument-Agda (variable-Term-Agda 0 nil))))
_ = refl

Lambda abstractions

_ :
  quoteTerm  (x : )  x) 
  lambda-Term-Agda visible-Visibility-Argument-Agda
    ( cons-Abstraction-Agda "x" (variable-Term-Agda 0 nil))
_ = refl

_ :
  quoteTerm  {x : } (y : )  x) 
  lambda-Term-Agda hidden-Visibility-Argument-Agda
    ( cons-Abstraction-Agda
      ( "x")
      ( lambda-Term-Agda visible-Visibility-Argument-Agda
        ( cons-Abstraction-Agda "y" (variable-Term-Agda 1 nil))))
_ = refl

private
  helper : (A : UU lzero)  A  A
  helper A x = x

  _ :
    quoteTerm (helper (  )  { zero-ℕ  zero-ℕ ; (succ-ℕ x)  x})) 
    definition-Term-Agda
      ( quote helper)
      ( cons
        -- ℕ → ℕ
        ( visible-Argument-Agda
          ( dependent-product-Term-Agda
            ( visible-Argument-Agda (definition-Term-Agda (quote ) nil))
            ( cons-Abstraction-Agda "_" (definition-Term-Agda (quote ) nil))))
        ( unit-list
          -- The pattern matching lambda
          ( visible-Argument-Agda
            ( pattern-lambda-Term-Agda
              ( cons
                -- zero-ℕ clause-Clause-Agda
                ( clause-Clause-Agda
                  -- No telescope
                  ( nil)
                  -- Left side of the first lambda case
                  ( unit-list
                    ( visible-Argument-Agda
                      ( constructor-Term-Agda (quote zero-ℕ) nil)))
                  -- Right side of the first lambda case
                  ( constructor-Term-Agda (quote zero-ℕ) nil))
                ( unit-list
                  -- succ-ℕ clause-Clause-Agda
                  ( clause-Clause-Agda
                    -- Telescope-Agda matching the "x"
                    ( unit-list
                      ( "x" ,
                        visible-Argument-Agda
                          ( definition-Term-Agda (quote ) nil)))
                    -- Left side of the second lambda case
                    ( unit-list
                      ( visible-Argument-Agda
                        ( constructor-Term-Agda
                          ( quote succ-ℕ)
                          ( unit-list
                            ( visible-Argument-Agda (variable-Term-Agda 0))))))
                    -- Right side of the second lambda case
                    ( variable-Term-Agda 0 nil))))
              ( nil)))))
  _ = refl

  _ :
    quoteTerm (helper (empty  )  ())) 
    definition-Term-Agda
      ( quote helper)
      ( cons
        ( visible-Argument-Agda
          ( dependent-product-Term-Agda
            ( visible-Argument-Agda (definition-Term-Agda (quote empty) nil))
          ( cons-Abstraction-Agda "_" (definition-Term-Agda (quote ) nil))))
        ( unit-list
          ( visible-Argument-Agda
            -- Lambda
            ( pattern-lambda-Term-Agda
              ( unit-list
                -- Clause-Agda
                ( absurd-Clause-Agda
                  ( unit-list
                    ( "()" ,
                      visible-Argument-Agda
                        ( definition-Term-Agda (quote empty) nil)))
                  ( unit-list
                    ( visible-Argument-Agda (absurd-Pattern-Agda 0)))))
              ( nil)))))
  _ = refl

Pi terms

_ : quoteTerm (  ) 
    dependent-product-Term-Agda
      ( visible-Argument-Agda (definition-Term-Agda (quote ) nil))
      ( cons-Abstraction-Agda "_" (definition-Term-Agda (quote ) nil))
_ = refl

_ : quoteTerm ((x : )  is-zero-ℕ x) 
    dependent-product-Term-Agda
      ( visible-Argument-Agda (definition-Term-Agda (quote ) nil))
      ( cons-Abstraction-Agda "x"
        ( definition-Term-Agda
          ( quote is-zero-ℕ)
          ( cons
            ( visible-Argument-Agda (variable-Term-Agda 0 nil))
            ( nil))))
_ = refl

Universes

_ :
  {l : Level} 
  quoteTerm (UU l) 
  sort-Term-Agda (universe-Sort-Agda (variable-Term-Agda 0 nil))
_ = refl

_ : quoteTerm (UU (lsuc lzero))  sort-Term-Agda (fixed-universe-Sort-Agda 1)
_ = refl

_ : quoteTerm (UUω)  sort-Term-Agda (fixed-large-universe-Sort-Agda 0)
_ = refl

Literals

_ : quoteTerm 3  literal-Term-Agda (nat-Literal-Agda 3)
_ = refl

_ : quoteTerm "hello"  literal-Term-Agda (string-Literal-Agda "hello")
_ = refl

Recent changes