Whiskering higher homotopies with respect to composition
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2024-02-06.
Last modified on 2024-03-13.
module foundation.whiskering-higher-homotopies-composition where
Imports
open import foundation.action-on-identifications-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.homotopies
Idea
Consider two dependent functions f g : (x : A) → B x
equipped with two
homotopies H H' : f ~ g
, and consider a
family of maps h : (x : A) → B x → C x
. Then we obtain a map
α ↦ ap h ·l α : H ~ H' → h ·l H ~ h ·l H'
This operation is called the
left whiskering¶.
Alternatively the left whiskering operation of 2
-homotopies can be defined
using the
action on higher identifications of functions
by
α x ↦ ap² h (α x).
Similarly, the right whiskering¶ is defined to be the operation
(H ~ H') → (h : (x : A) → B x) → (H ·r h ~ H' ·r h)
given by
α h ↦ α ·r h,
for any pair of homotopies H H' : f ~ g
, where
f g : (x : A) (y : B x) → C x y
.
Definitions
Left whiskering higher homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} {f g : (x : A) → B x} where left-whisker-comp² : (h : {x : A} → B x → C x) {H H' : f ~ g} (α : H ~ H') → h ·l H ~ h ·l H' left-whisker-comp² h α = ap h ·l α
Right whiskering higher homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} {f g : {x : A} (y : B x) → C x y} {H H' : {x : A} → f {x} ~ g {x}} where right-whisker-comp² : (α : {x : A} → H {x} ~ H' {x}) (h : (x : A) → B x) → H ·r h ~ H' ·r h right-whisker-comp² α h = α ·r h
Double whiskering higher homotopies
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} {D : (x : A) → B x → UU l4} {f g : {x : A} (y : B x) → C x y} {H H' : {x : A} → f {x} ~ g {x}} where double-whisker-comp² : (left : {x : A} {y : B x} → C x y → D x y) (α : {x : A} → H {x} ~ H' {x}) (right : (x : A) → B x) → left ·l H ·r right ~ left ·l H' ·r right double-whisker-comp² left α right = double-whisker-comp (ap left) α right
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2024-03-12. Vojtěch Štěpančík. Fail the website build on malformed concept macro invocations (#1066).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).