The invariant basis property of rings
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-05-19.
Last modified on 2023-03-13.
module ring-theory.invariant-basis-property-rings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import ring-theory.dependent-products-rings open import ring-theory.isomorphisms-rings open import ring-theory.rings open import univalent-combinatorics.standard-finite-types
Idea
A ring R is said to satisfy the invariant basis property if R^m ≅ R^n
implies
m = n
for any two natural numbers m
and n
.
Definition
invariant-basis-property-Ring : {l1 : Level} → Ring l1 → UU l1 invariant-basis-property-Ring R = (m n : ℕ) → iso-Ring (Π-Ring (Fin m) (λ i → R)) (Π-Ring (Fin n) (λ i → R)) → Id m n
Recent changes
- 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).