Cauchy exponentials of species of types in subuniverses

Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.

Created on 2023-04-27.
Last modified on 2025-08-30.

module species.cauchy-exponentials-species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types
open import foundation.coproduct-decompositions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.global-subuniverses
open import foundation.homotopies
open import foundation.propositions
open import foundation.relaxed-sigma-decompositions
open import foundation.sigma-closed-subuniverses
open import foundation.sigma-decomposition-subuniverse
open import foundation.subuniverses
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-unit-type
open import foundation.unit-type
open import foundation.univalence
open import foundation.universe-levels

open import species.cauchy-composition-species-of-types
open import species.cauchy-composition-species-of-types-in-subuniverses
open import species.cauchy-exponentials-species-of-types
open import species.cauchy-products-species-of-types-in-subuniverses
open import species.coproducts-species-of-types
open import species.coproducts-species-of-types-in-subuniverses
open import species.species-of-types-in-subuniverses

Idea

The Cauchy exponential of a species S : P → Q of types in subuniverses is defined by

  X ↦ Σ ((U , V , e) : Σ-Decomposition-subuniverse P X),  Π (u : U) → S (V u).

If Q is a global subuniverse, and if the previous definition is in Q, then the Cauchy exponential is also a species of types in subuniverses from P to Q.

Definition

The underlying type of the Cauchy exponential of species in a subuniverse

module _
  {α : Level  Level} {l1 l2 l3 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  where

  type-cauchy-exponential-species-subuniverse :
    (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
    (X : type-subuniverse P)  UU (lsuc l1  l2  l3)
  type-cauchy-exponential-species-subuniverse S X =
    Σ ( Σ-Decomposition-Subuniverse P X)
      ( λ D 
        ( b : indexing-type-Σ-Decomposition-Subuniverse P X D) 
        ( inclusion-subuniverse
            ( subuniverse-global-subuniverse Q l3)
            ( S (subuniverse-cotype-Σ-Decomposition-Subuniverse P X D b))))

Subuniverses closed under the Cauchy exponential of a species in a subuniverse

is-closed-under-cauchy-exponential-species-subuniverse :
  {α : Level  Level} {l1 l2 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α) 
  UUω
is-closed-under-cauchy-exponential-species-subuniverse {α} {l1} {l2} P Q =
  {l3 : Level}
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (X : type-subuniverse P) 
  is-in-subuniverse
    ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
    ( type-cauchy-exponential-species-subuniverse P Q S X)

The Cauchy exponential of a species of types in subuniverses

module _
  {α : Level  Level} {l1 l2 l3 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q)
  where

  cauchy-exponential-species-subuniverse :
    species-subuniverse P (subuniverse-global-subuniverse Q l3) 
    species-subuniverse P (subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
  pr1 (cauchy-exponential-species-subuniverse S X) =
    type-cauchy-exponential-species-subuniverse P Q S X
  pr2 (cauchy-exponential-species-subuniverse S X) = C1 S X

Propositions

The Cauchy exponential in terms of composition

module _
  {α : Level  Level}
  {l1 l2 l3 : Level}
  (P : subuniverse l1 l2)
  (Q : global-subuniverse α)
  (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q)
  (C2 : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit)
  (C3 : is-closed-under-cauchy-composition-species-subuniverse P Q)
  (C4 : is-closed-under-Σ-subuniverse P)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (X : type-subuniverse P)
  where

  equiv-cauchy-exponential-composition-unit-species-subuniverse :
    inclusion-subuniverse
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  lzero  l3))
      ( cauchy-composition-species-subuniverse
        P Q C3 C4  _  unit , C2) S X) 
    inclusion-subuniverse
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
      ( cauchy-exponential-species-subuniverse P Q C1 S X)
  equiv-cauchy-exponential-composition-unit-species-subuniverse =
    equiv-tot  _  left-unit-law-product)

Equivalence to Cauchy exponentials of species of types

module _
  {α : Level  Level} {l1 l2 l3 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q)
  (C2 :
    ( U : UU l1) 
    ( V : U  UU l1) 
    ( (u : U)  is-in-subuniverse P (V u)) 
    is-in-subuniverse P (Σ U V)  is-in-subuniverse P U)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (X : type-subuniverse P)
  where

  equiv-cauchy-exponential-Σ-extension-species-subuniverse :
    Σ-extension-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
      ( cauchy-exponential-species-subuniverse P Q C1 S)
      ( inclusion-subuniverse P X) 
    cauchy-exponential-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S))
      ( inclusion-subuniverse P X)
  equiv-cauchy-exponential-Σ-extension-species-subuniverse =
    ( reassociate') ∘e
    ( equiv-tot
      ( λ d 
        equiv-Σ-equiv-base
          ( λ p 
            ( u : indexing-type-Relaxed-Σ-Decomposition d) 
            inclusion-subuniverse
              ( subuniverse-global-subuniverse Q l3)
              ( S (cotype-Relaxed-Σ-Decomposition d u , p u)))
          ( ( equiv-remove-redundant-prop
              ( is-prop-type-Prop (P (indexing-type-Relaxed-Σ-Decomposition d)))
              ( λ pV 
                C2
                  ( indexing-type-Relaxed-Σ-Decomposition d)
                  ( cotype-Relaxed-Σ-Decomposition d)
                  ( pV)
                  ( tr
                    ( is-in-subuniverse P)
                    ( eq-equiv
                      ( matching-correspondence-Relaxed-Σ-Decomposition d))
                    ( pr2 X)))) ∘e
            ( commutative-product) ∘e
            ( equiv-remove-redundant-prop
              ( is-prop-type-Prop (P (inclusion-subuniverse P X)))
              ( λ _  pr2 X))))) ∘e
    ( reassociate)
    where
    reassociate :
      Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
        ( cauchy-exponential-species-subuniverse P Q C1 S)
        ( inclusion-subuniverse P X) 
      Σ ( Relaxed-Σ-Decomposition l1 l1 (inclusion-subuniverse P X))
        ( λ (U , V , e) 
          Σ ( ( is-in-subuniverse P U × ((u : U)  is-in-subuniverse P (V u))) ×
              is-in-subuniverse P (inclusion-subuniverse P X))
            ( λ p  (u : U)  pr1 (S (V u , (pr2 (pr1 p)) u))))
    pr1 reassociate (pX , ((U , pU) , V , e) , s) =
      ((U , ((λ u  pr1 (V u)) , e)) , ((pU ,  u  pr2 (V u))) , pX) , s)
    pr2 reassociate =
      is-equiv-is-invertible
        ( λ ((U , V , e) , ( ((pU , pV) , pX) , s)) 
          ( pX , ((U , pU) ,  u  V u , pV u) , e) , s))
        ( refl-htpy)
        ( refl-htpy)

    reassociate' :
      Σ ( Relaxed-Σ-Decomposition l1 l1 (inclusion-subuniverse P X))
        ( λ d 
          Σ ( ( u : (indexing-type-Relaxed-Σ-Decomposition d)) 
              is-in-subuniverse P (cotype-Relaxed-Σ-Decomposition d u))
            ( λ p 
              ( ( u : indexing-type-Relaxed-Σ-Decomposition d) 
                inclusion-subuniverse
                  ( subuniverse-global-subuniverse Q l3)
                  ( S (cotype-Relaxed-Σ-Decomposition d u , p u)))))
        
        cauchy-exponential-species-types
          ( Σ-extension-species-subuniverse
              ( P)
              ( subuniverse-global-subuniverse Q l3)
              ( S))
        ( inclusion-subuniverse P X)
    pr1 reassociate' (d , pV , s) = d , ( λ u  (pV u) , (s u))
    pr2 reassociate' =
      is-equiv-is-invertible
        ( λ (d , f)  (d , pr1  f , pr2  f))
        ( refl-htpy)
        ( refl-htpy)

The Cauchy exponential of the sum of a species is equivalent to the Cauchy product of the exponential of the two species

module _
  {α : Level  Level}
  {l1 l2 l3 l4 : Level}
  (P : subuniverse l1 l2)
  (Q : global-subuniverse α)
  (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q)
  (C2 : is-closed-under-coproduct-species-subuniverse P Q)
  (C3 : is-closed-under-cauchy-product-species-subuniverse P Q)
  (C4 :
    ( U : UU l1) 
    ( V : U  UU l1) 
    ( (u : U)  is-in-subuniverse P (V u)) 
      ( is-in-subuniverse P (Σ U V)) 
      ( is-in-subuniverse P U))
  (C5 : is-closed-under-coproducts-subuniverse P)
  (C6 :
    ( A B : UU l1) 
    is-in-subuniverse P (A + B) 
    is-in-subuniverse P A × is-in-subuniverse P B)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
  (X : type-subuniverse P)
  where

  equiv-cauchy-exponential-sum-species-subuniverse :
    inclusion-subuniverse
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
      ( cauchy-exponential-species-subuniverse P Q C1
        ( coproduct-species-subuniverse P Q C2 S T) X) 
    inclusion-subuniverse
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
      ( cauchy-product-species-subuniverse P Q C3
        ( cauchy-exponential-species-subuniverse P Q C1 S)
        ( cauchy-exponential-species-subuniverse P Q C1 T)
        ( X))
  equiv-cauchy-exponential-sum-species-subuniverse =
    ( inv-equiv
      ( equiv-Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
        ( cauchy-product-species-subuniverse P Q C3
          ( cauchy-exponential-species-subuniverse P Q C1 S)
          ( cauchy-exponential-species-subuniverse P Q C1 T))
        ( X))) ∘e
    ( inv-equiv
      ( equiv-cauchy-product-Σ-extension-species-subuniverse
        ( P)
        ( Q)
        ( C3)
        ( C5)
        ( cauchy-exponential-species-subuniverse P Q C1 S)
        ( cauchy-exponential-species-subuniverse P Q C1 T)
        ( inclusion-subuniverse P X))) ∘e
    ( equiv-tot
      ( λ d 
        equiv-product
          ( inv-equiv
            ( equiv-cauchy-exponential-Σ-extension-species-subuniverse
              ( P)
              ( Q)
              ( C1)
              ( C4)
              ( S)
              ( left-summand-binary-coproduct-Decomposition d ,
                pr1 (lemma-C6 d))))
          ( inv-equiv
            ( equiv-cauchy-exponential-Σ-extension-species-subuniverse
              ( P)
              ( Q)
              ( C1)
              ( C4)
              ( T)
              ( right-summand-binary-coproduct-Decomposition d ,
                pr2 (lemma-C6 d)))))) ∘e
    ( equiv-cauchy-exponential-sum-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S))
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l4)
        ( T))
      ( pr1 X)) ∘e
    ( equiv-tot
      ( λ d 
        equiv-Π-equiv-family
          ( λ x 
            equiv-coproduct-Σ-extension-species-subuniverse P Q C2 S T
              ( cotype-Relaxed-Σ-Decomposition d x)))) ∘e
    ( equiv-cauchy-exponential-Σ-extension-species-subuniverse P Q C1 C4
      ( coproduct-species-subuniverse P Q C2 S T)
      ( X)) ∘e
    ( equiv-Σ-extension-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
      ( cauchy-exponential-species-subuniverse P Q C1
        ( coproduct-species-subuniverse P Q C2 S T))
      ( X))
    where
    lemma-C6 =
      λ d 
      C6
        ( left-summand-binary-coproduct-Decomposition d)
        ( right-summand-binary-coproduct-Decomposition d)
        ( tr
          ( is-in-subuniverse P)
          ( eq-equiv (matching-correspondence-binary-coproduct-Decomposition d))
          ( pr2 X))

Recent changes