Powers of elements in rings
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Maša Žaucer.
Created on 2022-05-20.
Last modified on 2023-08-21.
module ring-theory.powers-of-elements-rings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.action-on-identifications-functions open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import ring-theory.central-elements-rings open import ring-theory.powers-of-elements-semirings open import ring-theory.rings
Idea
The power operation on a ring is the map n x ↦ xⁿ
, which is defined by
iteratively multiplying x
with itself n
times.
Definition
power-Ring : {l : Level} (R : Ring l) → ℕ → type-Ring R → type-Ring R power-Ring R = power-Semiring (semiring-Ring R)
Properties
xⁿ⁺¹ = xⁿx
and xⁿ⁺¹ = xxⁿ
module _ {l : Level} (R : Ring l) where power-succ-Ring : (n : ℕ) (x : type-Ring R) → power-Ring R (succ-ℕ n) x = mul-Ring R (power-Ring R n x) x power-succ-Ring = power-succ-Semiring (semiring-Ring R) power-succ-Ring' : (n : ℕ) (x : type-Ring R) → power-Ring R (succ-ℕ n) x = mul-Ring R x (power-Ring R n x) power-succ-Ring' = power-succ-Semiring' (semiring-Ring R)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (R : Ring l) where distributive-power-add-Ring : (m n : ℕ) {x : type-Ring R} → power-Ring R (m +ℕ n) x = mul-Ring R (power-Ring R m x) (power-Ring R n x) distributive-power-add-Ring = distributive-power-add-Semiring (semiring-Ring R)
Powers by products of natural numbers are iterated powers
module _ {l : Level} (R : Ring l) where power-mul-Ring : (m n : ℕ) {x : type-Ring R} → power-Ring R (m *ℕ n) x = power-Ring R n (power-Ring R m x) power-mul-Ring = power-mul-Semiring (semiring-Ring R)
If x
commutes with y
then so do their powers
module _ {l : Level} (R : Ring l) where commute-powers-Ring' : (n : ℕ) {x y : type-Ring R} → ( mul-Ring R x y = mul-Ring R y x) → ( mul-Ring R (power-Ring R n x) y) = ( mul-Ring R y (power-Ring R n x)) commute-powers-Ring' = commute-powers-Semiring' (semiring-Ring R) commute-powers-Ring : (m n : ℕ) {x y : type-Ring R} → mul-Ring R x y = mul-Ring R y x → ( mul-Ring R (power-Ring R m x) (power-Ring R n y)) = ( mul-Ring R (power-Ring R n y) (power-Ring R m x)) commute-powers-Ring = commute-powers-Semiring (semiring-Ring R)
If x
commutes with y
, then powers distribute over the product of x
and y
module _ {l : Level} (R : Ring l) where distributive-power-mul-Ring : (n : ℕ) {x y : type-Ring R} → mul-Ring R x y = mul-Ring R y x → power-Ring R n (mul-Ring R x y) = mul-Ring R (power-Ring R n x) (power-Ring R n y) distributive-power-mul-Ring = distributive-power-mul-Semiring (semiring-Ring R)
(-x)ⁿ = (-1)ⁿxⁿ
module _ {l : Level} (R : Ring l) where power-neg-Ring : (n : ℕ) (x : type-Ring R) → power-Ring R n (neg-Ring R x) = mul-Ring R (power-Ring R n (neg-one-Ring R)) (power-Ring R n x) power-neg-Ring n x = ( ap (power-Ring R n) (inv (mul-neg-one-Ring R x))) ∙ ( distributive-power-mul-Ring R n (is-central-element-neg-one-Ring R x)) even-power-neg-Ring : (n : ℕ) (x : type-Ring R) → is-even-ℕ n → power-Ring R n (neg-Ring R x) = power-Ring R n x even-power-neg-Ring zero-ℕ x H = refl even-power-neg-Ring (succ-ℕ zero-ℕ) x H = ex-falso (is-odd-one-ℕ H) even-power-neg-Ring (succ-ℕ (succ-ℕ n)) x H = ( right-negative-law-mul-Ring R ( power-Ring R (succ-ℕ n) (neg-Ring R x)) ( x)) ∙ ( ( ap ( neg-Ring R) ( ( ap ( mul-Ring' R x) ( ( power-succ-Ring R n (neg-Ring R x)) ∙ ( ( right-negative-law-mul-Ring R ( power-Ring R n (neg-Ring R x)) ( x)) ∙ ( ap ( neg-Ring R) ( ( ap ( mul-Ring' R x) ( even-power-neg-Ring n x ( is-even-is-even-succ-succ-ℕ n H))) ∙ ( inv (power-succ-Ring R n x))))))) ∙ ( left-negative-law-mul-Ring R (power-Ring R (succ-ℕ n) x) x))) ∙ ( neg-neg-Ring R (power-Ring R (succ-ℕ (succ-ℕ n)) x))) odd-power-neg-Ring : (n : ℕ) (x : type-Ring R) → is-odd-ℕ n → power-Ring R n (neg-Ring R x) = neg-Ring R (power-Ring R n x) odd-power-neg-Ring zero-ℕ x H = ex-falso (H is-even-zero-ℕ) odd-power-neg-Ring (succ-ℕ zero-ℕ) x H = refl odd-power-neg-Ring (succ-ℕ (succ-ℕ n)) x H = ( right-negative-law-mul-Ring R ( power-Ring R (succ-ℕ n) (neg-Ring R x)) ( x)) ∙ ( ap ( neg-Ring R ∘ mul-Ring' R x) ( ( power-succ-Ring R n (neg-Ring R x)) ∙ ( ( right-negative-law-mul-Ring R ( power-Ring R n (neg-Ring R x)) ( x)) ∙ ( ( ap ( neg-Ring R) ( ( ap ( mul-Ring' R x) ( odd-power-neg-Ring n x ( is-odd-is-odd-succ-succ-ℕ n H))) ∙ ( ( left-negative-law-mul-Ring R (power-Ring R n x) x) ∙ ( ap (neg-Ring R) (inv (power-succ-Ring R n x)))))) ∙ ( neg-neg-Ring R (power-Ring R (succ-ℕ n) x))))))
Recent changes
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).