Odd roots of real numbers
Content created by Louis Wasserman.
Created on 2026-02-07.
Last modified on 2026-02-07.
{-# OPTIONS --lossy-unification #-} module real-numbers.odd-roots-real-numbers where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.automorphisms open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels open import real-numbers.cofinal-and-coinitial-strictly-increasing-pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.increasing-endomaps-real-numbers open import real-numbers.powers-real-numbers open import real-numbers.strictly-increasing-endomaps-real-numbers
Idea
For odd , the function x ↦ \root{n}{x} is defined on the real numbers as the inverse function to the power operation .
Definition
module _ (l : Level) (n : ℕ) (odd-n : is-odd-ℕ n) where cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-power-is-odd-exponent-ℝ : cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-ℝ ( l) ( l) cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-power-is-odd-exponent-ℝ = ( ( pointwise-ε-δ-continuous-power-ℝ l n , is-strictly-increasing-power-is-odd-exponent-ℝ l n odd-n) , is-cofinal-power-is-odd-exponent-ℝ l n odd-n , is-coinitial-power-is-odd-exponent-ℝ l n odd-n) aut-power-is-odd-exponent-ℝ : Aut (ℝ l) aut-power-is-odd-exponent-ℝ = aut-cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-ℝ ( cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-power-is-odd-exponent-ℝ) root-is-odd-exponent-ℝ : {l : Level} (n : ℕ) → is-odd-ℕ n → ℝ l → ℝ l root-is-odd-exponent-ℝ {l} n odd-n = map-inv-equiv (aut-power-is-odd-exponent-ℝ l n odd-n)
Properties
For odd n, nth roots are the inverse operation to nth powers
module _ {l : Level} (n : ℕ) (odd-n : is-odd-ℕ n) (x : ℝ l) where abstract is-section-root-is-odd-exponent-ℝ : power-ℝ n (root-is-odd-exponent-ℝ n odd-n x) = x is-section-root-is-odd-exponent-ℝ = is-section-map-inv-equiv (aut-power-is-odd-exponent-ℝ l n odd-n) x is-retraction-root-is-odd-exponent-ℝ : root-is-odd-exponent-ℝ n odd-n (power-ℝ n x) = x is-retraction-root-is-odd-exponent-ℝ = is-retraction-map-inv-equiv (aut-power-is-odd-exponent-ℝ l n odd-n) x
For odd n, the nth root operation preserves strict inequality
module _ {l : Level} (n : ℕ) (odd-n : is-odd-ℕ n) where abstract is-strictly-increasing-root-is-odd-exponent-ℝ : is-strictly-increasing-endomap-ℝ (root-is-odd-exponent-ℝ {l} n odd-n) is-strictly-increasing-root-is-odd-exponent-ℝ = is-strictly-increasing-map-inv-cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-ℝ ( cofinal-and-coinitial-strictly-increasing-pointwise-ε-δ-continuous-endomap-power-is-odd-exponent-ℝ ( l) ( n) ( odd-n))
For odd n, the nth root operation preserves inequality
module _ {l : Level} (n : ℕ) (odd-n : is-odd-ℕ n) where abstract is-increasing-root-is-odd-exponent-ℝ : is-increasing-endomap-ℝ (root-is-odd-exponent-ℝ {l} n odd-n) is-increasing-root-is-odd-exponent-ℝ = is-increasing-is-strictly-increasing-endomap-ℝ ( root-is-odd-exponent-ℝ n odd-n) ( is-strictly-increasing-root-is-odd-exponent-ℝ n odd-n)
Recent changes
- 2026-02-07. Louis Wasserman. Odd roots of real numbers (#1739).