Decreasing sequences in posets
Content created by Louis Wasserman.
Created on 2025-12-30.
Last modified on 2025-12-30.
module order-theory.decreasing-sequences-posets where
Imports
open import elementary-number-theory.natural-numbers open import foundation.propositions open import foundation.universe-levels open import order-theory.increasing-sequences-posets open import order-theory.opposite-posets open import order-theory.posets open import order-theory.sequences-posets
Idea
A sequence in a poset is decreasing¶ if it is increasing in the opposite poset.
Definition
module _ {l1 l2 : Level} (P : Poset l1 l2) where is-decreasing-prop-sequence-Poset : sequence-type-Poset P → Prop l2 is-decreasing-prop-sequence-Poset = is-increasing-prop-sequence-Poset (opposite-Poset P) is-decreasing-sequence-Poset : sequence-type-Poset P → UU l2 is-decreasing-sequence-Poset u = type-Prop (is-decreasing-prop-sequence-Poset u)
Properties
A sequence u in a poset is decreasing if and only if uₙ₊₁ ≤ uₙ for all n : ℕ
module _ {l1 l2 : Level} (P : Poset l1 l2) (u : sequence-type-Poset P) where abstract is-decreasing-leq-succ-sequence-Poset : ((n : ℕ) → leq-Poset P (u (succ-ℕ n)) (u n)) → is-decreasing-sequence-Poset P u is-decreasing-leq-succ-sequence-Poset = is-increasing-leq-succ-sequence-Poset (opposite-Poset P) u leq-succ-is-decreasing-sequence-Poset : is-decreasing-sequence-Poset P u → ((n : ℕ) → leq-Poset P (u (succ-ℕ n)) (u n)) leq-succ-is-decreasing-sequence-Poset = leq-succ-is-increasing-sequence-Poset (opposite-Poset P) u
Recent changes
- 2025-12-30. Louis Wasserman. Properties of limits of sequences in the real numbers (#1767).