Powers of elements in commutative rings
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Maša Žaucer and Louis Wasserman.
Created on 2023-02-20.
Last modified on 2025-11-08.
module commutative-algebra.powers-of-elements-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.identity-types open import foundation.universe-levels open import ring-theory.powers-of-elements-rings
Idea
The power operation on a commutative ring is the map n x ↦ xⁿ, which is
defined by iteratively multiplying x with itself n times.
Definition
power-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → ℕ → type-Commutative-Ring A → type-Commutative-Ring A power-Commutative-Ring A = power-Ring (ring-Commutative-Ring A)
Properties
xⁿ⁺¹ = xⁿx and xⁿ⁺¹ = xxⁿ
module _ {l : Level} (A : Commutative-Ring l) where power-succ-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → power-Commutative-Ring A (succ-ℕ n) x = mul-Commutative-Ring A (power-Commutative-Ring A n x) x power-succ-Commutative-Ring = power-succ-Ring (ring-Commutative-Ring A) power-succ-Commutative-Ring' : (n : ℕ) (x : type-Commutative-Ring A) → power-Commutative-Ring A (succ-ℕ n) x = mul-Commutative-Ring A x (power-Commutative-Ring A n x) power-succ-Commutative-Ring' = power-succ-Ring' (ring-Commutative-Ring A)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (A : Commutative-Ring l) where distributive-power-add-Commutative-Ring : (m n : ℕ) {x : type-Commutative-Ring A} → power-Commutative-Ring A (m +ℕ n) x = mul-Commutative-Ring A ( power-Commutative-Ring A m x) ( power-Commutative-Ring A n x) distributive-power-add-Commutative-Ring = distributive-power-add-Ring (ring-Commutative-Ring A)
Powers by products of natural numbers are iterated powers
module _ {l : Level} (A : Commutative-Ring l) where power-mul-Commutative-Ring : (m n : ℕ) {x : type-Commutative-Ring A} → power-Commutative-Ring A (m *ℕ n) x = power-Commutative-Ring A n (power-Commutative-Ring A m x) power-mul-Commutative-Ring = power-mul-Ring (ring-Commutative-Ring A)
Powers distribute over multiplication
module _ {l : Level} (A : Commutative-Ring l) where distributive-power-mul-Commutative-Ring : (n : ℕ) (x y : type-Commutative-Ring A) → power-Commutative-Ring A n (mul-Commutative-Ring A x y) = mul-Commutative-Ring A ( power-Commutative-Ring A n x) ( power-Commutative-Ring A n y) distributive-power-mul-Commutative-Ring n x y = distributive-power-mul-Ring ( ring-Commutative-Ring A) ( n) ( commutative-mul-Commutative-Ring A x y)
(-x)ⁿ = (-1)ⁿxⁿ
module _ {l : Level} (A : Commutative-Ring l) where power-neg-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → power-Commutative-Ring A n (neg-Commutative-Ring A x) = mul-Commutative-Ring A ( power-Commutative-Ring A n (neg-one-Commutative-Ring A)) ( power-Commutative-Ring A n x) power-neg-Commutative-Ring = power-neg-Ring (ring-Commutative-Ring A) even-power-neg-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → is-even-ℕ n → power-Commutative-Ring A n (neg-Commutative-Ring A x) = power-Commutative-Ring A n x even-power-neg-Commutative-Ring = even-power-neg-Ring (ring-Commutative-Ring A) odd-power-neg-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → is-odd-ℕ n → power-Commutative-Ring A n (neg-Commutative-Ring A x) = neg-Commutative-Ring A (power-Commutative-Ring A n x) odd-power-neg-Commutative-Ring = odd-power-neg-Ring (ring-Commutative-Ring A)
Commutative ring homomorphisms preserve powers of elements
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (S : Commutative-Ring l2) (f : hom-Commutative-Ring R S) where abstract preserves-powers-hom-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring R) → map-hom-Commutative-Ring R S f (power-Commutative-Ring R n x) = power-Commutative-Ring S n (map-hom-Commutative-Ring R S f x) preserves-powers-hom-Commutative-Ring = preserves-powers-hom-Ring ( ring-Commutative-Ring R) ( ring-Commutative-Ring S) ( f)
Recent changes
- 2025-11-08. Louis Wasserman. Powers of real numbers (#1673).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).