Powers of elements in commutative rings

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Maša Žaucer.

Created on 2023-02-20.
Last modified on 2023-08-21.

module commutative-algebra.powers-of-elements-commutative-rings where
Imports
open import commutative-algebra.commutative-rings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.parity-natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import ring-theory.powers-of-elements-rings

Idea

The power operation on a commutative ring is the map n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times.

Definition

power-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l) 
    type-Commutative-Ring A  type-Commutative-Ring A
power-Commutative-Ring A = power-Ring (ring-Commutative-Ring A)

Properties

xⁿ⁺¹ = xⁿx and xⁿ⁺¹ = xxⁿ

module _
  {l : Level} (A : Commutative-Ring l)
  where

  power-succ-Commutative-Ring :
    (n : ) (x : type-Commutative-Ring A) 
    power-Commutative-Ring A (succ-ℕ n) x 
    mul-Commutative-Ring A (power-Commutative-Ring A n x) x
  power-succ-Commutative-Ring =
    power-succ-Ring (ring-Commutative-Ring A)

  power-succ-Commutative-Ring' :
    (n : ) (x : type-Commutative-Ring A) 
    power-Commutative-Ring A (succ-ℕ n) x 
    mul-Commutative-Ring A x (power-Commutative-Ring A n x)
  power-succ-Commutative-Ring' =
    power-succ-Ring' (ring-Commutative-Ring A)

Powers by sums of natural numbers are products of powers

module _
  {l : Level} (A : Commutative-Ring l)
  where

  distributive-power-add-Commutative-Ring :
    (m n : ) {x : type-Commutative-Ring A} 
    power-Commutative-Ring A (m +ℕ n) x 
    mul-Commutative-Ring A
      ( power-Commutative-Ring A m x)
      ( power-Commutative-Ring A n x)
  distributive-power-add-Commutative-Ring =
    distributive-power-add-Ring (ring-Commutative-Ring A)

Powers by products of natural numbers are iterated powers

module _
  {l : Level} (A : Commutative-Ring l)
  where

  power-mul-Commutative-Ring :
    (m n : ) {x : type-Commutative-Ring A} 
    power-Commutative-Ring A (m *ℕ n) x 
    power-Commutative-Ring A n (power-Commutative-Ring A m x)
  power-mul-Commutative-Ring =
    power-mul-Ring (ring-Commutative-Ring A)

Powers distribute over multiplication

module _
  {l : Level} (A : Commutative-Ring l)
  where

  distributive-power-mul-Commutative-Ring :
    (n : ) (x y : type-Commutative-Ring A) 
    power-Commutative-Ring A n (mul-Commutative-Ring A x y) 
    mul-Commutative-Ring A
      ( power-Commutative-Ring A n x)
      ( power-Commutative-Ring A n y)
  distributive-power-mul-Commutative-Ring n x y =
    distributive-power-mul-Ring
      ( ring-Commutative-Ring A)
      ( n)
      ( commutative-mul-Commutative-Ring A x y)

(-x)ⁿ = (-1)ⁿxⁿ

module _
  {l : Level} (A : Commutative-Ring l)
  where

  power-neg-Commutative-Ring :
    (n : ) (x : type-Commutative-Ring A) 
    power-Commutative-Ring A n (neg-Commutative-Ring A x) 
    mul-Commutative-Ring A
      ( power-Commutative-Ring A n (neg-one-Commutative-Ring A))
      ( power-Commutative-Ring A n x)
  power-neg-Commutative-Ring =
    power-neg-Ring (ring-Commutative-Ring A)

  even-power-neg-Commutative-Ring :
    (n : ) (x : type-Commutative-Ring A) 
    is-even-ℕ n 
    power-Commutative-Ring A n (neg-Commutative-Ring A x) 
    power-Commutative-Ring A n x
  even-power-neg-Commutative-Ring =
    even-power-neg-Ring (ring-Commutative-Ring A)

  odd-power-neg-Commutative-Ring :
    (n : ) (x : type-Commutative-Ring A) 
    is-odd-ℕ n 
    power-Commutative-Ring A n (neg-Commutative-Ring A x) 
    neg-Commutative-Ring A (power-Commutative-Ring A n x)
  odd-power-neg-Commutative-Ring =
    odd-power-neg-Ring (ring-Commutative-Ring A)

Recent changes