Upper bounds for type families over the natural numbers
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-02-14.
Last modified on 2023-04-08.
module elementary-number-theory.upper-bounds-natural-numbers where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.universe-levels
Idea
A type family over the natural numbers has an upper bound n
, if there is a
function from P x
to the type x ≤ n
for all x : ℕ
. Similar for strict
upper bounds.
Definition
Upper bounds
is-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → UU l is-upper-bound-ℕ P n = (m : ℕ) → P m → leq-ℕ m n
Strict upper bounds
is-strict-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → UU l is-strict-upper-bound-ℕ P n = (m : ℕ) → P m → le-ℕ m n
Properties
A strict upper bound is an upper bound
is-upper-bound-is-strict-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → is-strict-upper-bound-ℕ P n → is-upper-bound-ℕ P n is-upper-bound-is-strict-upper-bound-ℕ P n H x p = leq-le-ℕ x n (H x p)
Recent changes
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).