Upper bounds for type families over the natural numbers
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Louis Wasserman.
Created on 2022-02-14.
Last modified on 2025-10-14.
module elementary-number-theory.upper-bounds-natural-numbers where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.universe-levels
Idea
A type family over the
natural numbers has an
upper bound¶
n, if there is a function from P x to the type x ≤ n for all x : ℕ.
Analogously, a
strict upper bound¶
is defined by a function from P x to the type x < n for all x : ℕ.
Definition
Upper bounds
is-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → UU l is-upper-bound-ℕ P n = (m : ℕ) → P m → leq-ℕ m n
Strict upper bounds
is-strict-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → UU l is-strict-upper-bound-ℕ P n = (m : ℕ) → P m → le-ℕ m n
Properties
A strict upper bound is an upper bound
is-upper-bound-is-strict-upper-bound-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) → is-strict-upper-bound-ℕ P n → is-upper-bound-ℕ P n is-upper-bound-is-strict-upper-bound-ℕ P n H x p = leq-le-ℕ x n (H x p)
Recent changes
- 2025-10-14. Louis Wasserman. Refactor the natural numbers and integers up to present code standards (#1568).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>tags and markdown syntax (#490).