Iterated loop spaces

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-03-10.
Last modified on 2025-11-06.

module synthetic-homotopy-theory.iterated-loop-spaces where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.function-types
open import foundation.iterated-successors-truncation-levels
open import foundation.iterating-functions
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.universe-levels

open import structured-types.h-spaces
open import structured-types.pointed-types

open import synthetic-homotopy-theory.loop-spaces

Idea

The iterated loop space ΩⁿA of a pointed type A is obtained by iteratively applying the loop space operation Ω to A.

Definitions

Iterated loop spaces

module _
  {l : Level}
  where

  iterated-loop-space :   Pointed-Type l  Pointed-Type l
  iterated-loop-space n = iterate n Ω

  type-iterated-loop-space :   Pointed-Type l  UU l
  type-iterated-loop-space n A = type-Pointed-Type (iterated-loop-space n A)

  point-iterated-loop-space :
    (n : ) (A : Pointed-Type l)  type-iterated-loop-space n A
  point-iterated-loop-space n A = point-Pointed-Type (iterated-loop-space n A)

Iterated loop spaces of H-spaces

module _
  {l : Level}
  where

  iterated-loop-space-H-Space :   H-Space l  H-Space l
  iterated-loop-space-H-Space zero-ℕ X = X
  iterated-loop-space-H-Space (succ-ℕ n) X =
    Ω-H-Space (iterated-loop-space n (pointed-type-H-Space X))

If A is (𝑛+𝑘)-truncated then ΩⁿA is 𝑘-truncated

is-trunc-iterated-loop-space :
  {l : Level} (n : ) (k : 𝕋) (A : Pointed-Type l) 
  is-trunc (iterate-succ-𝕋 n k) (type-Pointed-Type A) 
  is-trunc k (type-iterated-loop-space n A)
is-trunc-iterated-loop-space zero-ℕ k A H = H
is-trunc-iterated-loop-space (succ-ℕ n) k A H =
  is-trunc-Ω k
    ( iterated-loop-space n A)
    ( is-trunc-iterated-loop-space n (succ-𝕋 k) A H)

See also

Recent changes