Iterated loop spaces
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-10.
Last modified on 2025-11-06.
module synthetic-homotopy-theory.iterated-loop-spaces where
Imports
open import elementary-number-theory.natural-numbers open import foundation.function-types open import foundation.iterated-successors-truncation-levels open import foundation.iterating-functions open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universe-levels open import structured-types.h-spaces open import structured-types.pointed-types open import synthetic-homotopy-theory.loop-spaces
Idea
The
iterated loop space¶
ΩⁿA of a pointed type A is obtained by
iteratively applying the
loop space operation Ω to A.
Definitions
Iterated loop spaces
module _ {l : Level} where iterated-loop-space : ℕ → Pointed-Type l → Pointed-Type l iterated-loop-space n = iterate n Ω type-iterated-loop-space : ℕ → Pointed-Type l → UU l type-iterated-loop-space n A = type-Pointed-Type (iterated-loop-space n A) point-iterated-loop-space : (n : ℕ) (A : Pointed-Type l) → type-iterated-loop-space n A point-iterated-loop-space n A = point-Pointed-Type (iterated-loop-space n A)
Iterated loop spaces of H-spaces
module _ {l : Level} where iterated-loop-space-H-Space : ℕ → H-Space l → H-Space l iterated-loop-space-H-Space zero-ℕ X = X iterated-loop-space-H-Space (succ-ℕ n) X = Ω-H-Space (iterated-loop-space n (pointed-type-H-Space X))
If A is (𝑛+𝑘)-truncated then ΩⁿA is 𝑘-truncated
is-trunc-iterated-loop-space : {l : Level} (n : ℕ) (k : 𝕋) (A : Pointed-Type l) → is-trunc (iterate-succ-𝕋 n k) (type-Pointed-Type A) → is-trunc k (type-iterated-loop-space n A) is-trunc-iterated-loop-space zero-ℕ k A H = H is-trunc-iterated-loop-space (succ-ℕ n) k A H = is-trunc-Ω k ( iterated-loop-space n A) ( is-trunc-iterated-loop-space n (succ-𝕋 k) A H)
See also
External links
- Loop space on Wikidata
- Function iteration on Wikidata
Recent changes
- 2025-11-06. Fredrik Bakke. Miscellaneous edits from #1547 (#1667).
- 2025-02-27. Egbert Rijke and Fredrik Bakke. Cleaning up for homotopy groups (#836).
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).