Zero real numbers
Content created by Louis Wasserman.
Created on 2025-12-23.
Last modified on 2025-12-23.
module real-numbers.zero-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.singleton-subtypes open import foundation.subtypes open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
A real number is zero¶ if it is similar to zero.
Definition
is-zero-prop-ℝ : {l : Level} → ℝ l → Prop l is-zero-prop-ℝ x = sim-prop-ℝ x zero-ℝ is-zero-ℝ : {l : Level} → ℝ l → UU l is-zero-ℝ x = sim-ℝ x zero-ℝ
Properties
A real number x is zero if and only if it equals raise-zero-ℝ l for the appropriate universe level l
module _ {l : Level} {x : ℝ l} where abstract is-zero-iff-eq-raise-zero-ℝ : (is-zero-ℝ x) ↔ (x = raise-zero-ℝ l) is-zero-iff-eq-raise-zero-ℝ = ( is-rational-iff-eq-raise-real-ℝ) ∘iff ( inv-iff is-rational-iff-sim-rational-ℝ) eq-raise-zero-is-zero-ℝ : is-zero-ℝ x → x = raise-zero-ℝ l eq-raise-zero-is-zero-ℝ = forward-implication is-zero-iff-eq-raise-zero-ℝ is-zero-eq-raise-zero-ℝ : x = raise-zero-ℝ l → is-zero-ℝ x is-zero-eq-raise-zero-ℝ = backward-implication is-zero-iff-eq-raise-zero-ℝ is-zero-raise-zero-ℝ : (l : Level) → is-zero-ℝ (raise-zero-ℝ l) is-zero-raise-zero-ℝ l = is-zero-eq-raise-zero-ℝ refl
The subtype of zero real numbers is a singleton subtype
abstract is-singleton-subtype-is-zero-ℝ : (l : Level) → is-singleton-subtype (is-zero-prop-ℝ {l}) is-singleton-subtype-is-zero-ℝ l = ( ( raise-zero-ℝ l , is-zero-raise-zero-ℝ l) , λ (x , is-zero-x) → eq-type-subtype ( is-zero-prop-ℝ) ( inv (eq-raise-zero-is-zero-ℝ is-zero-x)))
External links
- Zero at Wikidata
Recent changes
- 2025-12-23. Louis Wasserman. Standardize an “is zero” predicate on the real numbers (#1752).