Uniqueness of set truncations
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Daniel Gratzer, Elisabeth Stenholm, Julian KG, fernabnor and louismntnu.
Created on 2022-02-17.
Last modified on 2024-01-25.
module foundation.uniqueness-set-truncations where
Imports
open import foundation.dependent-pair-types open import foundation.mere-equality open import foundation.sets open import foundation.uniqueness-set-quotients open import foundation.universal-property-set-truncation open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies
Idea
The universal property of set truncation implies that set truncations are uniquely unique.
Properties
A 3-for-2 property for set truncations
module _ {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) (C : Set l3) (g : A → type-Set C) {h : hom-Set B C} (H : (h ∘ f) ~ g) where abstract is-equiv-is-set-truncation-is-set-truncation : is-set-truncation B f → is-set-truncation C g → is-equiv h is-equiv-is-set-truncation-is-set-truncation Sf Sg = is-equiv-is-set-quotient-is-set-quotient ( mere-eq-equivalence-relation A) ( B) ( reflecting-map-mere-eq B f) ( C) ( reflecting-map-mere-eq C g) ( H) ( is-set-quotient-is-set-truncation B f Sf) ( is-set-quotient-is-set-truncation C g Sg) abstract is-set-truncation-is-equiv-is-set-truncation : is-set-truncation C g → is-equiv h → is-set-truncation B f is-set-truncation-is-equiv-is-set-truncation Sg Eh = is-set-truncation-is-set-quotient B f ( is-set-quotient-is-equiv-is-set-quotient ( mere-eq-equivalence-relation A) ( B) ( reflecting-map-mere-eq B f) ( C) ( reflecting-map-mere-eq C g) ( H) ( is-set-quotient-is-set-truncation C g Sg) ( Eh)) abstract is-set-truncation-is-set-truncation-is-equiv : is-equiv h → is-set-truncation B f → is-set-truncation C g is-set-truncation-is-set-truncation-is-equiv Eh Sf = is-set-truncation-is-set-quotient C g ( is-set-quotient-is-set-quotient-is-equiv ( mere-eq-equivalence-relation A) ( B) ( reflecting-map-mere-eq B f) ( C) ( reflecting-map-mere-eq C g) ( H) ( Eh) ( is-set-quotient-is-set-truncation B f Sf))
The unique uniqueness of set truncations
module _ {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) (C : Set l3) (g : A → type-Set C) (Sf : is-set-truncation B f) (Sg : is-set-truncation C g) where abstract uniqueness-set-truncation : is-contr (Σ (type-Set B ≃ type-Set C) (λ e → (map-equiv e ∘ f) ~ g)) uniqueness-set-truncation = uniqueness-set-quotient ( mere-eq-equivalence-relation A) ( B) ( reflecting-map-mere-eq B f) ( is-set-quotient-is-set-truncation B f Sf) ( C) ( reflecting-map-mere-eq C g) ( is-set-quotient-is-set-truncation C g Sg) equiv-uniqueness-set-truncation : type-Set B ≃ type-Set C equiv-uniqueness-set-truncation = pr1 (center uniqueness-set-truncation) map-equiv-uniqueness-set-truncation : type-Set B → type-Set C map-equiv-uniqueness-set-truncation = map-equiv equiv-uniqueness-set-truncation triangle-uniqueness-set-truncation : (map-equiv-uniqueness-set-truncation ∘ f) ~ g triangle-uniqueness-set-truncation = pr2 (center uniqueness-set-truncation)
Recent changes
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).