The sharp modality

Content created by Fredrik Bakke.

Created on 2023-11-24.
Last modified on 2024-09-23.

{-# OPTIONS --cohesion --flat-split #-}

module modal-type-theory.sharp-modality where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.locally-small-types
open import foundation.universe-levels

open import orthogonal-factorization-systems.locally-small-modal-operators
open import orthogonal-factorization-systems.modal-induction
open import orthogonal-factorization-systems.modal-subuniverse-induction

Idea

The sharp modality is an axiomatized monadic modality that we postulate as a right adjoint to the flat modality.

In this file, we postulate that is a modal operator with a crisp elimination principle and a modal induction principle.

Please note that there is some redundancy between the postulated axioms, and that they are likely to change in the future.

Postulates

postulate
   : {l : Level} (A : UU l)  UU l

  unit-sharp : {l : Level} {A : UU l}  A   A

sharp : {l : Level} (A : UU l)  UU l
sharp = 

Crisp elimination for the sharp modality

Given a crisp element x :: ♯ A we recover an element of A. We postulate that this construction is a crisp coherent inverse to the sharp unit.

postulate
  crisp-elim-sharp :
    {@l : Level} {@A : UU l}  @ A  A

  compute-crisp-elim-sharp :
    {@l : Level} {@A : UU l} (@x : A) 
    crisp-elim-sharp (unit-sharp x)  x

  uniqueness-crisp-elim-sharp :
    {@l : Level} {@A : UU l} (@x :  A) 
    unit-sharp (crisp-elim-sharp x)  x

  coherence-uniqueness-crisp-elim-sharp :
    {@l : Level} {@A : UU l} (@x : A) 
    ( uniqueness-crisp-elim-sharp (unit-sharp x)) 
    ( ap unit-sharp (compute-crisp-elim-sharp x))

Rewriting. In the future we may enable rewrite rules for the computation and uniqueness property of the crisp elimination principle for the sharp modality.

  {-# REWRITE compute-crisp-elim-sharp uniqueness-crisp-elim-sharp #-}

Crisp induction for the sharp modality

The crisp induction principle for the sharp modality is a crisp version of the principle that sharp codiscrete types are local at the flat counit.

postulate
  crisp-ind-sharp :
    {@l1 : Level} {l2 : Level} {@A : UU l1} (C : A  UU l2) 
    ((@x : A)  C x)  (x : A)   (C x)

  compute-crisp-ind-sharp :
    {@l1 : Level} {l2 : Level} {@A : UU l1} (C : A  UU l2)
    (f : (@x : A)  C x) 
    (@x : A)  crisp-ind-sharp C f x  unit-sharp (f x)

Rewriting. In the future, we may enable a rewriting for the computation rule of the crisp induction principle for the sharp modality.

  {-# REWRITE compute-crisp-ind-sharp #-}

We postulate that sharp satisfies a modal induction principle below.

Note. It should also be possible to construct it from the more general pointwise-sharp considered below, but we leave this for future work.

postulate
  ind-sharp :
    {l1 l2 : Level} {A : UU l1} (C :  A  UU l2) 
    ((x : A)   (C (unit-sharp x))) 
    (x :  A)   (C x)

  compute-ind-sharp :
    {l1 l2 : Level} {A : UU l1} (C :  A  UU l2)
    (f : (x : A)   (C (unit-sharp x))) 
    ind-sharp C f  unit-sharp ~ f

The sharp modality’s action on “pointwise” type families

TODO. This section consists entirely of unfinished work that is not typechecked as part of the library. This code is included as notes for future work.

postulate
  pointwise-sharp :
    {@♭ l1 : Level} {l2 : Level} {@♭ A : UU l1} → (@♭ A → UU l2) → A → UU l2
postulate
  unit-pointwise-sharp :
    {@♭ l1 : Level} {@♭ A : UU l1} {l2 : Level}
    {B : @♭ A → UU l2} (a : (@♭ x : A) → B x) →
    (x : A) → pointwise-sharp B x

  elim-pointwise-sharp :
    {@♭ l1 l2 : Level} {@♭ A : UU l1} {B : @♭ A → UU l2}
    (f : (@♭ x : A) → pointwise-sharp B x) → (@♭ x : A) → B x

  compute-pointwise-sharp :
    {@♭ l1 : Level} {@♭ A : UU l1} {l2 : Level}
    (B : A → UU l2) (x : A) → pointwise-sharp (λ a → B a) x = ♯ (B x)

  {-# REWRITE compute-pointwise-sharp #-}

  compute-unit-pointwise-sharp :
    {@♭ l1 : Level} {@♭ A : UU l1} {l2 : Level}
    {B : @♭ A → UU l2} (f : (@♭ x : A) → B x)
    (@♭ x : A) → unit-pointwise-sharp f x = unit-sharp (f x)

  -- {-# REWRITE compute-unit-pointwise-sharp #-}

syntax elim-pointwise-sharp (λ γ → a) ctx = let♯ γ ::= ctx in♯ a ↓↓♯

Warning: When normalizing λ B x → unit-pointwise-sharp f x, the rewrite compute-unit-pointwise-sharp will fire turning it into unit-sharp (f x), which is ill-typed on cohesive x : A (and the typechecker complains). [Mey] (May be outdated info)

postulate
  compute-elim-pointwise-sharp :
    {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2}
    (@♭ f : (@♭ x : A) → pointwise-sharp B x)
    (@♭ x : A) → elim-pointwise-sharp f x = crisp-elim-sharp (f x)

  {-# REWRITE compute-elim-pointwise-sharp #-}

Uncrispening contexts

record
  context-uncrisp-sharp
  {@♭ l1 l2 : Level} {@♭ A : UU l1} : UU (lsuc (l1 ⊔ l2))
  where
  constructor ctx
  field
    ᶜB : A → UU l2
    ᶜf : (@♭ x : A) → ♯ (ᶜB x)
    ᶜa : A

open context-uncrisp-sharp

module _
  {@♭ l1 l2 : Level} {@♭ A : UU l1}
  where

  uncrisp-sharp : (B : A → UU l2) (f : (@♭ x : A) → ♯ (B x)) → (x : A) → ♯ (B x)
  uncrisp-sharp B f x =
    unit-pointwise-sharp (λ γ → crisp-elim-sharp ((ᶜf γ) (ᶜa γ))) (ctx B f x)

  compute-uncrisp-sharp :
    (@♭ B : A → UU l2) (@♭ f : (@♭ x : A) → ♯ (B x)) (@♭ x : A) →
    uncrisp-sharp B f x = f x
  compute-uncrisp-sharp B f x =
    compute-unit-pointwise-sharp
      ( λ γ → crisp-elim-sharp ((ᶜf γ) (ᶜa γ)))
      ( ctx B f x)

module _
  {@♭ l1 l2 l3 : Level}
  {@♭ A : UU l1} {@♭ B : A → UU l2}
  where

  uncrisp-sharp² :
    (C : (x : A) → B x → UU l3)
    (f : (@♭ x : A) (@♭ y : B x) → ♯ (C x y))
    (x : A) (y : B x) → ♯ (C x y)
  uncrisp-sharp² C f x y =
    uncrisp-sharp (λ (x , y) → C x y) (λ p → f (pr1 p) (pr2 p)) (x , y)

  compute-uncrisp-sharp² :
    (@♭ C : (x : A) → B x → UU l3)
    (@♭ f : (@♭ x : A) (@♭ y : B x) → ♯ (C x y))
    (@♭ x : A) (@♭ y : B x) → uncrisp-sharp² C f x y = f x y
  compute-uncrisp-sharp² C f x y =
    compute-uncrisp-sharp (λ (x , y) → C x y) (λ p → f (pr1 p) (pr2 p)) (x , y)

Sharp induction revisited

The following definitions rely on rewrite rules.

module _
  {@♭ l1 l2 : Level} {@♭ A : UU l1} (@♭ C : ♯ A → UU l2)
  (@♭ f : (x : A) → ♯ (C (unit-sharp x)))
  where

  ind-sharp' : (x : ♯ A) → ♯ (C x)
  ind-sharp' =
    crisp-ind-sharp C (λ x → crisp-elim-sharp (f (crisp-elim-sharp x)))

  compute-ind-sharp' : (@♭ x : A) → ind-sharp' (unit-sharp x) = f x
  compute-ind-sharp' x =
    compute-crisp-ind-sharp C
      ( λ x → crisp-elim-sharp (f (crisp-elim-sharp x)))
      ( unit-sharp x)

Definitions

The sharp modal operator

sharp-locally-small-operator-modality :
  (l : Level)  locally-small-operator-modality l l l
pr1 (sharp-locally-small-operator-modality l) = 
pr2 (sharp-locally-small-operator-modality l) A = is-locally-small' {l} { A}

The sharp modality’s induction principle

induction-principle-sharp :
  {l : Level}  induction-principle-modality {l} unit-sharp
pr1 (induction-principle-sharp P) = ind-sharp P
pr2 (induction-principle-sharp P) = compute-ind-sharp P

strong-induction-principle-subuniverse-sharp :
  {l : Level}  strong-induction-principle-subuniverse-modality {l} unit-sharp
strong-induction-principle-subuniverse-sharp =
  strong-induction-principle-subuniverse-induction-principle-modality
    ( unit-sharp)
    ( induction-principle-sharp)

strong-ind-subuniverse-sharp :
  {l : Level}  strong-ind-subuniverse-modality {l} unit-sharp
strong-ind-subuniverse-sharp =
  strong-ind-strong-induction-principle-subuniverse-modality
    ( unit-sharp)
    ( strong-induction-principle-subuniverse-sharp)

compute-strong-ind-subuniverse-sharp :
  {l : Level} 
  compute-strong-ind-subuniverse-modality {l}
    unit-sharp
    strong-ind-subuniverse-sharp
compute-strong-ind-subuniverse-sharp =
  compute-strong-ind-strong-induction-principle-subuniverse-modality
    ( unit-sharp)
    ( strong-induction-principle-subuniverse-sharp)

induction-principle-subuniverse-sharp :
  {l : Level}  induction-principle-subuniverse-modality {l} unit-sharp
induction-principle-subuniverse-sharp =
  induction-principle-subuniverse-induction-principle-modality
    ( unit-sharp)
    ( induction-principle-sharp)

ind-subuniverse-sharp :
  {l : Level}  ind-subuniverse-modality {l} unit-sharp
ind-subuniverse-sharp =
  ind-induction-principle-subuniverse-modality
    ( unit-sharp)
    ( induction-principle-subuniverse-sharp)

compute-ind-subuniverse-sharp :
  {l : Level} 
  compute-ind-subuniverse-modality {l} unit-sharp ind-subuniverse-sharp
compute-ind-subuniverse-sharp =
  compute-ind-induction-principle-subuniverse-modality
    ( unit-sharp)
    ( induction-principle-subuniverse-sharp)

The sharp modality’s recursion principle

rec-sharp :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} 
  (A   B)  ( A   B)
rec-sharp {B = B} = ind-sharp  _  B)

compute-rec-sharp :
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  (f : A   B) 
  (rec-sharp f  unit-sharp) ~ f
compute-rec-sharp {B = B} = compute-ind-sharp  _  B)

recursion-principle-sharp :
  {l : Level}  recursion-principle-modality {l} unit-sharp
pr1 (recursion-principle-sharp) = rec-sharp
pr2 (recursion-principle-sharp) = compute-rec-sharp

strong-recursion-principle-subuniverse-sharp :
  {l : Level}  strong-recursion-principle-subuniverse-modality {l} unit-sharp
strong-recursion-principle-subuniverse-sharp =
  strong-recursion-principle-subuniverse-recursion-principle-modality
    ( unit-sharp)
    ( recursion-principle-sharp)

strong-rec-subuniverse-sharp :
  {l : Level}  strong-rec-subuniverse-modality {l} unit-sharp
strong-rec-subuniverse-sharp =
  strong-rec-strong-recursion-principle-subuniverse-modality
    ( unit-sharp)
    ( strong-recursion-principle-subuniverse-sharp)

compute-strong-rec-subuniverse-sharp :
  {l : Level} 
  compute-strong-rec-subuniverse-modality {l}
    unit-sharp
    strong-rec-subuniverse-sharp
compute-strong-rec-subuniverse-sharp =
  compute-strong-rec-strong-recursion-principle-subuniverse-modality
    ( unit-sharp)
    ( strong-recursion-principle-subuniverse-sharp)

recursion-principle-subuniverse-sharp :
  {l : Level}  recursion-principle-subuniverse-modality {l} unit-sharp
recursion-principle-subuniverse-sharp =
  recursion-principle-subuniverse-recursion-principle-modality
    ( unit-sharp)
    ( recursion-principle-sharp)

rec-subuniverse-sharp :
  {l : Level}  rec-subuniverse-modality {l} unit-sharp
rec-subuniverse-sharp =
  rec-recursion-principle-subuniverse-modality
    ( unit-sharp)
    ( recursion-principle-subuniverse-sharp)

compute-rec-subuniverse-sharp :
  {l : Level} 
  compute-rec-subuniverse-modality {l} unit-sharp rec-subuniverse-sharp
compute-rec-subuniverse-sharp =
  compute-rec-recursion-principle-subuniverse-modality
    ( unit-sharp)
    ( recursion-principle-subuniverse-sharp)

References

[Che]
Felix Cherubini. Felixwellen/DCHoTT-Agda. GitHub repository. URL: https://github.com/felixwellen/DCHoTT-Agda.
[Lic]
Dan Licata. Dlicata335/cohesion-agda. GitHub repository. URL: https://github.com/dlicata335/cohesion-agda.
[Mey]
David Jaz Meyers. Davidjaz/cohesion. GitHub repository. URL: https://github.com/DavidJaz/Cohesion.
[Shu18]
Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.

Recent changes