Morphisms of algebras over monads on precategories

Content created by Ben Connors and Fredrik Bakke.

Created on 2025-06-04.
Last modified on 2025-06-05.

module category-theory.morphisms-algebras-monads-on-precategories where
Imports
open import category-theory.algebras-monads-on-precategories
open import category-theory.commuting-squares-of-morphisms-in-precategories
open import category-theory.monads-on-precategories
open import category-theory.precategories

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

Idea

A morphism between monad algebras a : TA → A and b : TB → B is a map f : A → B such that b ∘ Tf = f ∘ a.

Definitions

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  (T : monad-Precategory C)
  where

  coherence-morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T) 
    hom-Precategory C
      ( obj-algebra-monad-Precategory C T f)
      ( obj-algebra-monad-Precategory C T g) 
    UU l2
  coherence-morphism-algebra-monad-Precategory f g h =
    coherence-square-hom-Precategory C
      ( hom-endofunctor-monad-Precategory C T h)
      ( hom-algebra-monad-Precategory C T f)
      ( hom-algebra-monad-Precategory C T g)
      ( h)

  morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T)  UU l2
  morphism-algebra-monad-Precategory f g =
    Σ ( hom-Precategory C
        ( obj-algebra-monad-Precategory C T f)
        ( obj-algebra-monad-Precategory C T g))
      ( coherence-morphism-algebra-monad-Precategory f g)

  hom-morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T)
    (h : morphism-algebra-monad-Precategory f g) 
    hom-Precategory C
      ( obj-algebra-monad-Precategory C T f)
      ( obj-algebra-monad-Precategory C T g)
  hom-morphism-algebra-monad-Precategory f g h = pr1 h

  top-hom-morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T)
    (h : morphism-algebra-monad-Precategory f g) 
    hom-Precategory C
      ( obj-endofunctor-monad-Precategory C T
        ( obj-algebra-monad-Precategory C T f))
      ( obj-endofunctor-monad-Precategory C T
        ( obj-algebra-monad-Precategory C T g))
  top-hom-morphism-algebra-monad-Precategory f g h =
    hom-endofunctor-monad-Precategory C T
      ( hom-morphism-algebra-monad-Precategory f g h)

  comm-hom-morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T)
    (h : morphism-algebra-monad-Precategory f g) 
    coherence-square-hom-Precategory C
      ( top-hom-morphism-algebra-monad-Precategory f g h)
      ( hom-algebra-monad-Precategory C T f)
      ( hom-algebra-monad-Precategory C T g)
      ( hom-morphism-algebra-monad-Precategory f g h)
  comm-hom-morphism-algebra-monad-Precategory f g h = pr2 h

  comp-morphism-algebra-monad-Precategory :
    (a b c : algebra-monad-Precategory C T)
    (g : morphism-algebra-monad-Precategory b c) 
    (f : morphism-algebra-monad-Precategory a b) 
    morphism-algebra-monad-Precategory a c
  comp-morphism-algebra-monad-Precategory a b c g f =
    ( comp-hom-Precategory C
      ( hom-morphism-algebra-monad-Precategory b c g)
      ( hom-morphism-algebra-monad-Precategory a b f)) ,
    ( pasting-horizontal-coherence-square-hom-Precategory C
      ( top-hom-morphism-algebra-monad-Precategory a b f)
      ( top-hom-morphism-algebra-monad-Precategory b c g)
      ( hom-algebra-monad-Precategory C T a)
      ( hom-algebra-monad-Precategory C T b)
      ( hom-algebra-monad-Precategory C T c)
      ( hom-morphism-algebra-monad-Precategory a b f)
      ( hom-morphism-algebra-monad-Precategory b c g)
      ( comm-hom-morphism-algebra-monad-Precategory a b f)
      ( comm-hom-morphism-algebra-monad-Precategory b c g)) 
    ( ap
      ( postcomp-hom-Precategory C (hom-algebra-monad-Precategory C T c) _)
      ( inv (preserves-comp-endofunctor-monad-Precategory C T _ _)))

  is-set-morphism-algebra-monad-Precategory :
    (f g : algebra-monad-Precategory C T) 
    is-set (morphism-algebra-monad-Precategory f g)
  is-set-morphism-algebra-monad-Precategory f g =
    is-set-Σ
      ( is-set-hom-Precategory C _ _)
      ( λ hk  is-set-is-prop (is-set-hom-Precategory C _ _ _ _))

Recent changes