Subsets of rings
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Maša Žaucer.
Created on 2022-04-05.
Last modified on 2024-04-20.
module ring-theory.subsets-rings where
Imports
open import foundation.identity-types open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import group-theory.subgroups-abelian-groups open import ring-theory.rings
Idea
A subset of a ring is a subtype of the underlying type of a ring
Definition
Subsets of rings
subset-Ring : (l : Level) {l1 : Level} (R : Ring l1) → UU (lsuc l ⊔ l1) subset-Ring l R = subtype l (type-Ring R) is-set-subset-Ring : (l : Level) {l1 : Level} (R : Ring l1) → is-set (subset-Ring l R) is-set-subset-Ring l R = is-set-function-type is-set-type-Prop module _ {l1 l2 : Level} (R : Ring l1) (S : subset-Ring l2 R) where is-in-subset-Ring : type-Ring R → UU l2 is-in-subset-Ring = is-in-subtype S is-prop-is-in-subset-Ring : (x : type-Ring R) → is-prop (is-in-subset-Ring x) is-prop-is-in-subset-Ring = is-prop-is-in-subtype S type-subset-Ring : UU (l1 ⊔ l2) type-subset-Ring = type-subtype S inclusion-subset-Ring : type-subset-Ring → type-Ring R inclusion-subset-Ring = inclusion-subtype S ap-inclusion-subset-Ring : (x y : type-subset-Ring) → x = y → (inclusion-subset-Ring x = inclusion-subset-Ring y) ap-inclusion-subset-Ring = ap-inclusion-subtype S is-in-subset-inclusion-subset-Ring : (x : type-subset-Ring) → is-in-subset-Ring (inclusion-subset-Ring x) is-in-subset-inclusion-subset-Ring = is-in-subtype-inclusion-subtype S is-closed-under-eq-subset-Ring : {x y : type-Ring R} → is-in-subset-Ring x → (x = y) → is-in-subset-Ring y is-closed-under-eq-subset-Ring = is-closed-under-eq-subtype S is-closed-under-eq-subset-Ring' : {x y : type-Ring R} → is-in-subset-Ring y → (x = y) → is-in-subset-Ring x is-closed-under-eq-subset-Ring' = is-closed-under-eq-subtype' S
The condition that a subset contains zero
module _ {l1 l2 : Level} (R : Ring l1) (S : subset-Ring l2 R) where contains-zero-subset-Ring : UU l2 contains-zero-subset-Ring = is-in-subset-Ring R S (zero-Ring R)
The condition that a subset contains one
contains-one-subset-Ring : UU l2 contains-one-subset-Ring = is-in-subset-Ring R S (one-Ring R)
The condition that a subset is closed under addition
is-closed-under-addition-subset-Ring : UU (l1 ⊔ l2) is-closed-under-addition-subset-Ring = {x y : type-Ring R} → is-in-subset-Ring R S x → is-in-subset-Ring R S y → is-in-subset-Ring R S (add-Ring R x y)
The condition that a subset is closed under negatives
is-closed-under-negatives-subset-Ring : UU (l1 ⊔ l2) is-closed-under-negatives-subset-Ring = {x : type-Ring R} → is-in-subset-Ring R S x → is-in-subset-Ring R S (neg-Ring R x)
The condition that a subset is closed under multiplication
is-closed-under-multiplication-subset-Ring : UU (l1 ⊔ l2) is-closed-under-multiplication-subset-Ring = (x y : type-Ring R) → is-in-subset-Ring R S x → is-in-subset-Ring R S y → is-in-subset-Ring R S (mul-Ring R x y)
The condition that a subset is closed under multiplication from the left by an arbitrary element
is-closed-under-left-multiplication-subset-Ring-Prop : Prop (l1 ⊔ l2) is-closed-under-left-multiplication-subset-Ring-Prop = Π-Prop ( type-Ring R) ( λ x → Π-Prop ( type-Ring R) ( λ y → function-Prop ( is-in-subset-Ring R S y) ( S (mul-Ring R x y)))) is-closed-under-left-multiplication-subset-Ring : UU (l1 ⊔ l2) is-closed-under-left-multiplication-subset-Ring = type-Prop is-closed-under-left-multiplication-subset-Ring-Prop is-prop-is-closed-under-left-multiplication-subset-Ring : is-prop is-closed-under-left-multiplication-subset-Ring is-prop-is-closed-under-left-multiplication-subset-Ring = is-prop-type-Prop is-closed-under-left-multiplication-subset-Ring-Prop
The condition that a subset is closed-under-multiplication from the right by an arbitrary element
is-closed-under-right-multiplication-subset-Ring-Prop : Prop (l1 ⊔ l2) is-closed-under-right-multiplication-subset-Ring-Prop = Π-Prop ( type-Ring R) ( λ x → Π-Prop ( type-Ring R) ( λ y → function-Prop ( is-in-subset-Ring R S x) ( S (mul-Ring R x y)))) is-closed-under-right-multiplication-subset-Ring : UU (l1 ⊔ l2) is-closed-under-right-multiplication-subset-Ring = type-Prop is-closed-under-right-multiplication-subset-Ring-Prop is-prop-is-closed-under-right-multiplication-subset-Ring : is-prop is-closed-under-right-multiplication-subset-Ring is-prop-is-closed-under-right-multiplication-subset-Ring = is-prop-type-Prop is-closed-under-right-multiplication-subset-Ring-Prop
The condition that a subset is an additive subgroup
module _ {l1 : Level} (R : Ring l1) where is-additive-subgroup-subset-Ring : {l2 : Level} → subset-Ring l2 R → UU (l1 ⊔ l2) is-additive-subgroup-subset-Ring = is-subgroup-Ab (ab-Ring R) is-prop-is-additive-subgroup-subset-Ring : {l2 : Level} (A : subset-Ring l2 R) → is-prop (is-additive-subgroup-subset-Ring A) is-prop-is-additive-subgroup-subset-Ring = is-prop-is-subgroup-Ab (ab-Ring R)
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-05-08. Egbert Rijke. Equality of ideals in commutative rings (#604).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).