Suspension prespectra
Content created by Fredrik Bakke.
Created on 2023-10-12.
Last modified on 2023-10-12.
module synthetic-homotopy-theory.suspension-prespectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.iterated-suspensions-of-pointed-types open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.prespectra open import synthetic-homotopy-theory.suspensions-of-pointed-types open import synthetic-homotopy-theory.universal-property-suspensions-of-pointed-types
Idea
Given a pointed type A
, the
sequence of
iterated suspensions
of A
A Σ¹A Σ²A Σ³A ...
defines a prespectrum Σ^∞A
that we
call the suspension prespectrum of A
. Its structure map is defined
degreewise by the identity
Σⁿ⁺¹A = Σⁿ⁺¹A ↝ ΣⁿA →∗ ΩΣⁿ⁺¹A
Note: Even though the suspension prespectrum is defined degreewise by the adjoint to the identity map, it is not in general a spectrum, as the transposing map of the loop-suspension adjunction does not generally send equivalences to equivalences.
Definition
pointed-structure-map-suspension-Prespectrum : {l : Level} (A : Pointed-Type l) (n : ℕ) → suspension-Pointed-Type (iterated-suspension-Pointed-Type n A) →∗ iterated-suspension-Pointed-Type (succ-ℕ n) A pointed-structure-map-suspension-Prespectrum A n = id-pointed-map pointed-adjoint-structure-map-suspension-Prespectrum : {l : Level} (A : Pointed-Type l) (n : ℕ) → iterated-suspension-Pointed-Type n A →∗ Ω (iterated-suspension-Pointed-Type (succ-ℕ n) A) pointed-adjoint-structure-map-suspension-Prespectrum A n = transpose-suspension-loop-adjunction ( iterated-suspension-Pointed-Type n A) ( iterated-suspension-Pointed-Type (succ-ℕ n) A) ( pointed-structure-map-suspension-Prespectrum A n) suspension-Prespectrum : {l : Level} → Pointed-Type l → Prespectrum l pr1 (suspension-Prespectrum A) n = iterated-suspension-Pointed-Type n A pr2 (suspension-Prespectrum A) = pointed-adjoint-structure-map-suspension-Prespectrum A
Recent changes
- 2023-10-12. Fredrik Bakke. Define suspension prespectra and maps of prespectra (#833).