The Archimedean property of the natural numbers
Content created by Louis Wasserman.
Created on 2025-01-31.
Last modified on 2025-02-03.
module elementary-number-theory.archimedean-property-natural-numbers where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.euclidean-division-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonzero-natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.transport-along-identifications
Definition
The
Archimedean property¶
of the natural numbers is that
for any nonzero natural number x
and any natural number y
, there is an
n : ℕ
such that y < n *ℕ x
.
abstract archimedean-property-ℕ : (x y : ℕ) → is-nonzero-ℕ x → exists ℕ (λ n → le-ℕ-Prop y (n *ℕ x)) archimedean-property-ℕ x y nonzero-x = intro-exists (succ-ℕ (quotient-euclidean-division-ℕ x y)) ( tr ( λ z → z <-ℕ succ-ℕ (quotient-euclidean-division-ℕ x y) *ℕ x) ( eq-euclidean-division-ℕ x y) ( preserves-le-left-add-ℕ ( quotient-euclidean-division-ℕ x y *ℕ x) ( remainder-euclidean-division-ℕ x y) ( x) ( strict-upper-bound-remainder-euclidean-division-ℕ x y nonzero-x)))
External links
- Archimedean property at Wikipedia
Recent changes
- 2025-02-03. Louis Wasserman. Existential quantification for the Archimedean property (#1262).
- 2025-01-31. Louis Wasserman. The Archimedean property of
ℕ
(#1256).