Strict inequality of positive real numbers
Content created by Louis Wasserman.
Created on 2025-10-14.
Last modified on 2025-10-14.
{-# OPTIONS --lossy-unification #-} module real-numbers.strict-inequality-positive-real-numbers where
Imports
open import foundation.propositions open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The standard strict ordering¶ on the positive real numbers is inherited from the standard strict ordering on real numbers.
Definition
le-prop-ℝ⁺ : {l1 l2 : Level} → ℝ⁺ l1 → ℝ⁺ l2 → Prop (l1 ⊔ l2) le-prop-ℝ⁺ x y = le-prop-ℝ (real-ℝ⁺ x) (real-ℝ⁺ y) le-ℝ⁺ : {l1 l2 : Level} → ℝ⁺ l1 → ℝ⁺ l2 → UU (l1 ⊔ l2) le-ℝ⁺ x y = type-Prop (le-prop-ℝ⁺ x y)
Recent changes
- 2025-10-14. Louis Wasserman. Multiplicative inverses of positive real numbers (#1569).