Nets in metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-09-11.
module metric-spaces.nets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.images open import foundation.inhabited-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.approximations-metric-spaces open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.images-isometries-metric-spaces open import metric-spaces.images-metric-spaces open import metric-spaces.images-short-functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.subspaces-metric-spaces open import metric-spaces.uniformly-continuous-functions-metric-spaces open import univalent-combinatorics.finitely-enumerable-subtypes open import univalent-combinatorics.finitely-enumerable-types open import univalent-combinatorics.inhabited-finitely-enumerable-subtypes
Idea
For an ε : ℚ⁺
, an ε
-net¶ to
a metric space X
is a
finitely enumerable
ε-approximation of X
.
Definition
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (ε : ℚ⁺) (S : finitely-enumerable-subtype l3 (type-Metric-Space X)) where is-net-prop-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3) is-net-prop-Metric-Space = is-approximation-prop-Metric-Space X ε ( subtype-finitely-enumerable-subtype S) is-net-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) is-net-Metric-Space = type-Prop is-net-prop-Metric-Space net-Metric-Space : {l1 l2 : Level} (l3 : Level) → Metric-Space l1 l2 → ℚ⁺ → UU (l1 ⊔ l2 ⊔ lsuc l3) net-Metric-Space l3 X ε = type-subtype (is-net-prop-Metric-Space {l3 = l3} X ε) module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (ε : ℚ⁺) (N : net-Metric-Space l3 X ε) where finitely-enumerable-subset-net-Metric-Space : finitely-enumerable-subtype l3 (type-Metric-Space X) finitely-enumerable-subset-net-Metric-Space = pr1 N subset-net-Metric-Space : subset-Metric-Space l3 X subset-net-Metric-Space = subtype-finitely-enumerable-subtype ( finitely-enumerable-subset-net-Metric-Space) is-approximation-subset-net-Metric-Space : is-approximation-Metric-Space X ε subset-net-Metric-Space is-approximation-subset-net-Metric-Space = pr2 N approximation-net-Metric-Space : approximation-Metric-Space l3 X ε approximation-net-Metric-Space = ( subset-net-Metric-Space , is-approximation-subset-net-Metric-Space)
If a metric space is inhabited, so is any net on it
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (|X| : is-inhabited (type-Metric-Space X)) (ε : ℚ⁺) (S : net-Metric-Space l3 X ε) where abstract is-inhabited-net-inhabited-Metric-Space : is-inhabited-finitely-enumerable-subtype (pr1 S) is-inhabited-net-inhabited-Metric-Space = is-inhabited-is-approximation-inhabited-Metric-Space X |X| ε ( subset-net-Metric-Space X ε S) ( is-approximation-subset-net-Metric-Space X ε S) inhabited-finitely-enumerable-subtype-net-Metric-Space : inhabited-finitely-enumerable-subtype l3 (type-Metric-Space X) inhabited-finitely-enumerable-subtype-net-Metric-Space = ( finitely-enumerable-subset-net-Metric-Space X ε S , is-inhabited-net-inhabited-Metric-Space)
Properties
If μ
is a modulus of uniform continuity for f : X → Y
and N
is a (μ ε)
-net of X
, then im f N
is an ε
-net of im f X
module _ {l1 l2 l3 l4 l5 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : type-function-Metric-Space X Y) {μ : ℚ⁺ → ℚ⁺} (is-modulus-ucont-f-μ : is-modulus-of-uniform-continuity-function-Metric-Space X Y f μ) (ε : ℚ⁺) (N : net-Metric-Space l5 X (μ ε)) where net-im-uniformly-continuous-function-net-Metric-Space : net-Metric-Space (l1 ⊔ l3 ⊔ l5) (im-Metric-Space X Y f) ε net-im-uniformly-continuous-function-net-Metric-Space = ( im-finitely-enumerable-subtype ( map-unit-im f) ( finitely-enumerable-subset-net-Metric-Space X (μ ε) N) , is-approximation-im-uniformly-continuous-function-approximation-Metric-Space ( X) ( Y) ( f) ( is-modulus-ucont-f-μ) ( ε) ( approximation-net-Metric-Space X (μ ε) N))
If f : X → Y
is a short function and N
is an ε
-net of X
, then im f N
is an ε
-net of im f X
module _ {l1 l2 l3 l4 l5 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : short-function-Metric-Space X Y) (ε : ℚ⁺) (N : net-Metric-Space l5 X ε) where net-im-short-function-net-Metric-Space : net-Metric-Space ( l1 ⊔ l3 ⊔ l5) ( im-short-function-Metric-Space X Y f) ( ε) net-im-short-function-net-Metric-Space = net-im-uniformly-continuous-function-net-Metric-Space ( X) ( Y) ( map-short-function-Metric-Space X Y f) ( id-is-modulus-of-uniform-continuity-is-short-function-Metric-Space ( X) ( Y) ( map-short-function-Metric-Space X Y f) ( is-short-map-short-function-Metric-Space X Y f)) ( ε) ( N)
If f : X → Y
is an isometry and N
is an ε
-net of X
, then im f N
is an ε
-net of im f X
module _ {l1 l2 l3 l4 l5 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : isometry-Metric-Space X Y) (ε : ℚ⁺) (N : net-Metric-Space l5 X ε) where net-im-isometry-net-Metric-Space : net-Metric-Space ( l1 ⊔ l3 ⊔ l5) ( im-isometry-Metric-Space X Y f) ( ε) net-im-isometry-net-Metric-Space = net-im-short-function-net-Metric-Space X Y ( short-isometry-Metric-Space X Y f) ( ε) ( N)
If f : X ≃ Y
is an isometric equivalence and N
is an ε
-net of X
, then im f A
is an ε
-net of Y
module _ {l1 l2 l3 l4 l5 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : isometric-equiv-Metric-Space X Y) (ε : ℚ⁺) (N : net-Metric-Space l5 X ε) where net-im-isometric-equiv-net-Metric-Space : net-Metric-Space (l1 ⊔ l3 ⊔ l5) Y ε net-im-isometric-equiv-net-Metric-Space = ( im-finitely-enumerable-subtype ( map-isometric-equiv-Metric-Space X Y f) ( finitely-enumerable-subset-net-Metric-Space X ε N) , is-approximation-im-isometric-equiv-approximation-Metric-Space X Y f ε ( approximation-net-Metric-Space X ε N))
Cartesian products of nets of metric spaces
module _ {l1 l2 l3 l4 l5 l6 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (ε : ℚ⁺) (M : net-Metric-Space l5 X ε) (N : net-Metric-Space l6 Y ε) where product-net-Metric-Space : net-Metric-Space (l5 ⊔ l6) (product-Metric-Space X Y) ε product-net-Metric-Space = ( product-finitely-enumerable-subtype ( finitely-enumerable-subset-net-Metric-Space X ε M) ( finitely-enumerable-subset-net-Metric-Space Y ε N) , is-approximation-product-approximation-Metric-Space X Y ε ( approximation-net-Metric-Space X ε M) ( approximation-net-Metric-Space Y ε N))
Recent changes
- 2025-09-11. Louis Wasserman. Inhabited totally bounded subspaces of metric spaces (#1542).
- 2025-09-06. Louis Wasserman. Inhabited finitely enumerable subtypes (#1530).
- 2025-09-04. Louis Wasserman. Suprema and infima of totally bounded subsets of the reals (#1510).
- 2025-08-31. Louis Wasserman. The image of a totally bounded metric space under a uniformly continuous function is totally bounded (#1513).
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).