Submultisets
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2023-01-28.
Last modified on 2023-09-10.
module trees.submultisets where
Imports
open import foundation.embeddings open import foundation.equivalences open import foundation.universe-levels open import trees.multisets
Idea
Given two multisets x
and y
, we say that x
is a submultiset of y
if
for every z ∈-𝕍 x
we have z ∈-𝕍 x ↪ z ∈-𝕍 y
.
Definition
Submultisets
is-submultiset-𝕍 : {l : Level} → 𝕍 l → 𝕍 l → UU (lsuc l) is-submultiset-𝕍 {l} y x = (z : 𝕍 l) → z ∈-𝕍 x → (z ∈-𝕍 x) ↪ (z ∈-𝕍 y) infix 6 _⊆-𝕍_ _⊆-𝕍_ : {l : Level} → 𝕍 l → 𝕍 l → UU (lsuc l) x ⊆-𝕍 y = is-submultiset-𝕍 y x
Full submultisets
is-full-submultiset-𝕍 : {l : Level} → 𝕍 l → 𝕍 l → UU (lsuc l) is-full-submultiset-𝕍 {l} y x = (z : 𝕍 l) → z ∈-𝕍 x → (z ∈-𝕍 x) ≃ (z ∈-𝕍 y) _⊑-𝕍_ : {l : Level} → 𝕍 l → 𝕍 l → UU (lsuc l) x ⊑-𝕍 y = is-full-submultiset-𝕍 y x
Recent changes
- 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).
- 2023-05-03. Egbert Rijke. Enriched directed trees and elements of W-types (#561).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).