Powers of positive rational numbers

Content created by Louis Wasserman.

Created on 2025-10-17.
Last modified on 2025-10-17.

module elementary-number-theory.powers-positive-rational-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.additive-group-of-rational-numbers
open import elementary-number-theory.archimedean-property-rational-numbers
open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers
open import elementary-number-theory.bernoullis-inequality-positive-rational-numbers
open import elementary-number-theory.geometric-sequences-positive-rational-numbers
open import elementary-number-theory.inequality-positive-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.multiplication-positive-rational-numbers
open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.nonzero-natural-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-positive-rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.transport-along-identifications

open import group-theory.multiples-of-elements-abelian-groups
open import group-theory.powers-of-elements-groups

Idea

The power operation on the positive rational numbers is the operation n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times. This file covers the case where n is a natural number.

Definition

power-ℚ⁺ :   ℚ⁺  ℚ⁺
power-ℚ⁺ = power-Group group-mul-ℚ⁺

Properties

1ⁿ = 1

power-one-ℚ⁺ : (n : )  power-ℚ⁺ n one-ℚ⁺  one-ℚ⁺
power-one-ℚ⁺ = power-unit-Group group-mul-ℚ⁺

qⁿ⁺¹ = qⁿq

power-succ-ℚ⁺ : (n : ) (q : ℚ⁺)  power-ℚ⁺ (succ-ℕ n) q  power-ℚ⁺ n q *ℚ⁺ q
power-succ-ℚ⁺ = power-succ-Group group-mul-ℚ⁺

qⁿ = qqⁿ

power-succ-ℚ⁺' : (n : ) (q : ℚ⁺)  power-ℚ⁺ (succ-ℕ n) q  q *ℚ⁺ power-ℚ⁺ n q
power-succ-ℚ⁺' = power-succ-Group' group-mul-ℚ⁺

qᵐ⁺ⁿ = qᵐqⁿ

distributive-power-add-ℚ⁺ :
  (m n : ) (q : ℚ⁺)  power-ℚ⁺ (m +ℕ n) q  power-ℚ⁺ m q *ℚ⁺ power-ℚ⁺ n q
distributive-power-add-ℚ⁺ m n _ = distributive-power-add-Group group-mul-ℚ⁺ m n

(pq)ⁿ=pⁿqⁿ

left-distributive-power-mul-ℚ⁺ :
  (n : ) (p q : ℚ⁺)  power-ℚ⁺ n (p *ℚ⁺ q)  power-ℚ⁺ n p *ℚ⁺ power-ℚ⁺ n q
left-distributive-power-mul-ℚ⁺ n p q =
  left-distributive-multiple-add-Ab abelian-group-mul-ℚ⁺ n

pᵐⁿ = (pᵐ)ⁿ

power-mul-ℚ⁺ :
  (m n : ) (q : ℚ⁺)  power-ℚ⁺ (m *ℕ n) q  power-ℚ⁺ n (power-ℚ⁺ m q)
power-mul-ℚ⁺ m n q = power-mul-Group group-mul-ℚ⁺ m n

If p and q are positive rational numbers with p < q and n is nonzero, then pⁿ < qⁿ

abstract
  preserves-le-power-ℚ⁺ :
    (n : ) (p q : ℚ⁺)  le-ℚ⁺ p q  is-nonzero-ℕ n 
    le-ℚ⁺ (power-ℚ⁺ n p) (power-ℚ⁺ n q)
  preserves-le-power-ℚ⁺ 0 p q p<q H = ex-falso (H refl)
  preserves-le-power-ℚ⁺ 1 p q p<q H = p<q
  preserves-le-power-ℚ⁺ (succ-ℕ n@(succ-ℕ _)) p q p<q H =
    transitive-le-ℚ⁺
      ( power-ℚ⁺ (succ-ℕ n) p)
      ( power-ℚ⁺ n p *ℚ⁺ q)
      ( power-ℚ⁺ (succ-ℕ n) q)
      ( preserves-le-right-mul-ℚ⁺ q _ _
        ( preserves-le-power-ℚ⁺ n p q p<q (is-nonzero-succ-ℕ _)))
      ( preserves-le-left-mul-ℚ⁺ (power-ℚ⁺ n p) _ _ p<q)

If p and q are positive rational numbers with p ≤ q, then pⁿ ≤ qⁿ

abstract
  preserves-leq-power-ℚ⁺ :
    (n : ) (p q : ℚ⁺)  leq-ℚ⁺ p q  leq-ℚ⁺ (power-ℚ⁺ n p) (power-ℚ⁺ n q)
  preserves-leq-power-ℚ⁺ 0 _ _ _ = refl-leq-ℚ one-ℚ
  preserves-leq-power-ℚ⁺ 1 p q p≤q = p≤q
  preserves-leq-power-ℚ⁺ (succ-ℕ n@(succ-ℕ _)) p q p≤q =
    transitive-leq-ℚ⁺
      ( power-ℚ⁺ (succ-ℕ n) p)
      ( power-ℚ⁺ n p *ℚ⁺ q)
      ( power-ℚ⁺ (succ-ℕ n) q)
      ( preserves-leq-right-mul-ℚ⁺ q _ _ (preserves-leq-power-ℚ⁺ n p q p≤q))
      ( preserves-leq-left-mul-ℚ⁺ (power-ℚ⁺ n p) _ _ p≤q)

For any positive rational ε, (1 + ε)ⁿ grows without bound

abstract
  bound-unbounded-power-one-plus-ℚ⁺ :
    (ε : ℚ⁺) (b : ) 
    Σ   n  le-ℚ b (rational-ℚ⁺ (power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε))))
  bound-unbounded-power-one-plus-ℚ⁺ ε⁺@(ε , is-pos-ε) b =
    let
      (n , b<nε) = bound-archimedean-property-ℚ ε b is-pos-ε
    in
      ( n ,
        transitive-le-ℚ _ _ _
          ( concatenate-le-leq-ℚ _ _ _
            ( le-left-add-rational-ℚ⁺ _ one-ℚ⁺)
            ( binary-tr
              ( leq-ℚ)
              ( inv (compute-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ ε⁺ n))
              ( ap
                ( rational-ℚ⁺)
                ( equational-reasoning
                  seq-standard-geometric-sequence-ℚ⁺
                      ( one-ℚ⁺)
                      ( one-ℚ⁺ +ℚ⁺ ε⁺)
                      ( n)
                   one-ℚ⁺ *ℚ⁺ power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε⁺)
                    by
                      inv
                        ( compute-standard-geometric-sequence-ℚ⁺
                          ( one-ℚ⁺)
                          ( one-ℚ⁺ +ℚ⁺ ε⁺)
                          ( n))
                   power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε⁺)
                    by left-unit-law-mul-ℚ⁺ _))
              ( bernoullis-inequality-ℚ⁺ ε⁺ n)))
          ( b<nε))

  unbounded-power-one-plus-ℚ⁺ :
    (ε : ℚ⁺) (b : ) 
    exists   n  le-ℚ-Prop b (rational-ℚ⁺ (power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε))))
  unbounded-power-one-plus-ℚ⁺ ε b =
    unit-trunc-Prop (bound-unbounded-power-one-plus-ℚ⁺ ε b)

If q is greater than one, qⁿ grows without bound

abstract
  bound-unbounded-power-greater-than-one-ℚ⁺ :
    (q : ℚ⁺) (b : )  le-ℚ⁺ one-ℚ⁺ q 
    Σ   n  le-ℚ b (rational-ℚ⁺ (power-ℚ⁺ n q)))
  bound-unbounded-power-greater-than-one-ℚ⁺ q⁺@(q , _) b 1<q =
    let
      q-1⁺ = positive-diff-le-ℚ one-ℚ q 1<q
      (n , b<⟨1+q-1⟩ⁿ) = bound-unbounded-power-one-plus-ℚ⁺ q-1⁺ b
    in
      ( n ,
        tr
          ( le-ℚ b)
          ( ap
            ( rational-ℚ⁺  power-ℚ⁺ n)
            ( eq-ℚ⁺ (is-identity-right-conjugation-add-ℚ one-ℚ q)))
          ( b<⟨1+q-1⟩ⁿ))

  unbounded-power-greater-than-one-ℚ⁺ :
    (q : ℚ⁺) (b : )  le-ℚ⁺ one-ℚ⁺ q 
    exists   n  le-ℚ-Prop b (rational-ℚ⁺ (power-ℚ⁺ n q)))
  unbounded-power-greater-than-one-ℚ⁺ q b 1<q =
    unit-trunc-Prop (bound-unbounded-power-greater-than-one-ℚ⁺ q b 1<q)

If ε is a positive rational number less than one, εⁿ becomes arbitrarily small

abstract
  bound-arbitrarily-small-power-le-one-ℚ⁺ :
    (ε δ : ℚ⁺)  le-ℚ⁺ ε one-ℚ⁺ 
    Σ   n  le-ℚ⁺ (power-ℚ⁺ n ε) δ)
  bound-arbitrarily-small-power-le-one-ℚ⁺ ε δ ε<1 =
    let
      1/δ = inv-ℚ⁺ δ
      1/ε = inv-ℚ⁺ ε
      1<1/ε =
        tr
          ( λ q  le-ℚ⁺ q 1/ε)
          ( inv-one-ℚ⁺)
          ( inv-le-ℚ⁺ ε one-ℚ⁺ ε<1)
      (n , 1/δ<⟨1/ε⟩ⁿ) =
        bound-unbounded-power-greater-than-one-ℚ⁺ 1/ε (rational-ℚ⁺ 1/δ) 1<1/ε
    in
      ( n ,
        binary-tr
          ( le-ℚ⁺)
          ( equational-reasoning
            inv-ℚ⁺ (power-ℚ⁺ n 1/ε)
             inv-ℚ⁺ (inv-ℚ⁺ (power-ℚ⁺ n ε))
              by ap inv-ℚ⁺ (power-inv-Group group-mul-ℚ⁺ n ε)
             power-ℚ⁺ n ε
              by inv-inv-ℚ⁺ (power-ℚ⁺ n ε))
          ( inv-inv-ℚ⁺ δ)
          ( inv-le-ℚ⁺ 1/δ (power-ℚ⁺ n 1/ε) 1/δ<⟨1/ε⟩ⁿ))

  arbitrarily-small-power-le-one-ℚ⁺ :
    (ε δ : ℚ⁺)  le-ℚ⁺ ε one-ℚ⁺ 
    exists   n  le-prop-ℚ⁺ (power-ℚ⁺ n ε) δ)
  arbitrarily-small-power-le-one-ℚ⁺ ε δ 1<ε =
    unit-trunc-Prop (bound-arbitrarily-small-power-le-one-ℚ⁺ ε δ 1<ε)

See also

Recent changes