Powers of positive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-17.
Last modified on 2025-11-09.
module elementary-number-theory.powers-positive-rational-numbers where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.archimedean-property-rational-numbers open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers open import elementary-number-theory.bernoullis-inequality-positive-rational-numbers open import elementary-number-theory.distance-rational-numbers open import elementary-number-theory.geometric-sequences-positive-rational-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.inequality-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.transport-along-identifications open import group-theory.multiples-of-elements-abelian-groups open import group-theory.powers-of-elements-groups open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.rational-sequences-approximating-zero open import order-theory.posets
Idea
The
power operation¶
on the positive
rational numbers is the
operation n x ↦ xⁿ, which is defined by
iteratively multiplying x with itself n
times. This file covers the case where n is a
natural number.
Definition
power-ℚ⁺ : ℕ → ℚ⁺ → ℚ⁺ power-ℚ⁺ = power-Group group-mul-ℚ⁺ rational-power-ℚ⁺ : ℕ → ℚ⁺ → ℚ rational-power-ℚ⁺ n q = rational-ℚ⁺ (power-ℚ⁺ n q)
Properties
1ⁿ = 1
power-one-ℚ⁺ : (n : ℕ) → power-ℚ⁺ n one-ℚ⁺ = one-ℚ⁺ power-one-ℚ⁺ = power-unit-Group group-mul-ℚ⁺
qⁿ⁺¹ = qⁿq
power-succ-ℚ⁺ : (n : ℕ) (q : ℚ⁺) → power-ℚ⁺ (succ-ℕ n) q = power-ℚ⁺ n q *ℚ⁺ q power-succ-ℚ⁺ = power-succ-Group group-mul-ℚ⁺
qⁿ = qqⁿ
power-succ-ℚ⁺' : (n : ℕ) (q : ℚ⁺) → power-ℚ⁺ (succ-ℕ n) q = q *ℚ⁺ power-ℚ⁺ n q power-succ-ℚ⁺' = power-succ-Group' group-mul-ℚ⁺
qᵐ⁺ⁿ = qᵐqⁿ
distributive-power-add-ℚ⁺ : (m n : ℕ) (q : ℚ⁺) → power-ℚ⁺ (m +ℕ n) q = power-ℚ⁺ m q *ℚ⁺ power-ℚ⁺ n q distributive-power-add-ℚ⁺ m n _ = distributive-power-add-Group group-mul-ℚ⁺ m n
(pq)ⁿ=pⁿqⁿ
left-distributive-power-mul-ℚ⁺ : (n : ℕ) (p q : ℚ⁺) → power-ℚ⁺ n (p *ℚ⁺ q) = power-ℚ⁺ n p *ℚ⁺ power-ℚ⁺ n q left-distributive-power-mul-ℚ⁺ n p q = left-distributive-multiple-add-Ab abelian-group-mul-ℚ⁺ n
pᵐⁿ = (pᵐ)ⁿ
power-mul-ℚ⁺ : (m n : ℕ) (q : ℚ⁺) → power-ℚ⁺ (m *ℕ n) q = power-ℚ⁺ n (power-ℚ⁺ m q) power-mul-ℚ⁺ m n q = power-mul-Group group-mul-ℚ⁺ m n
If p and q are positive rational numbers with p < q and n is nonzero, then pⁿ < qⁿ
abstract preserves-le-power-ℚ⁺ : (n : ℕ) → (p q : ℚ⁺) → le-ℚ⁺ p q → is-nonzero-ℕ n → le-ℚ⁺ (power-ℚ⁺ n p) (power-ℚ⁺ n q) preserves-le-power-ℚ⁺ 0 p q p<q H = ex-falso (H refl) preserves-le-power-ℚ⁺ 1 p q p<q _ = p<q preserves-le-power-ℚ⁺ (succ-ℕ n@(succ-ℕ _)) p q p<q _ = transitive-le-ℚ⁺ ( power-ℚ⁺ (succ-ℕ n) p) ( power-ℚ⁺ n p *ℚ⁺ q) ( power-ℚ⁺ (succ-ℕ n) q) ( preserves-le-right-mul-ℚ⁺ q _ _ ( preserves-le-power-ℚ⁺ n p q p<q (is-nonzero-succ-ℕ _))) ( preserves-le-left-mul-ℚ⁺ (power-ℚ⁺ n p) _ _ p<q)
If p and q are positive rational numbers with p ≤ q, then pⁿ ≤ qⁿ
abstract preserves-leq-power-ℚ⁺ : (n : ℕ) (p q : ℚ⁺) → leq-ℚ⁺ p q → leq-ℚ⁺ (power-ℚ⁺ n p) (power-ℚ⁺ n q) preserves-leq-power-ℚ⁺ 0 _ _ _ = refl-leq-ℚ one-ℚ preserves-leq-power-ℚ⁺ 1 p q p≤q = p≤q preserves-leq-power-ℚ⁺ (succ-ℕ n@(succ-ℕ _)) p q p≤q = transitive-leq-ℚ⁺ ( power-ℚ⁺ (succ-ℕ n) p) ( power-ℚ⁺ n p *ℚ⁺ q) ( power-ℚ⁺ (succ-ℕ n) q) ( preserves-leq-right-mul-ℚ⁺ q _ _ (preserves-leq-power-ℚ⁺ n p q p≤q)) ( preserves-leq-left-mul-ℚ⁺ (power-ℚ⁺ n p) _ _ p≤q)
For any positive rational ε, (1 + ε)ⁿ grows without bound
abstract bound-unbounded-power-one-plus-ℚ⁺ : (ε : ℚ⁺) (b : ℚ) → Σ ℕ (λ n → le-ℚ b (rational-ℚ⁺ (power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε)))) bound-unbounded-power-one-plus-ℚ⁺ ε⁺@(ε , is-pos-ε) b = let (n , b<nε) = bound-archimedean-property-ℚ ε b is-pos-ε in ( n , transitive-le-ℚ _ _ _ ( concatenate-le-leq-ℚ _ _ _ ( le-left-add-rational-ℚ⁺ _ one-ℚ⁺) ( binary-tr ( leq-ℚ) ( inv (compute-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ ε⁺ n)) ( ap ( rational-ℚ⁺) ( equational-reasoning seq-standard-geometric-sequence-ℚ⁺ ( one-ℚ⁺) ( one-ℚ⁺ +ℚ⁺ ε⁺) ( n) = one-ℚ⁺ *ℚ⁺ power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε⁺) by inv ( compute-standard-geometric-sequence-ℚ⁺ ( one-ℚ⁺) ( one-ℚ⁺ +ℚ⁺ ε⁺) ( n)) = power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε⁺) by left-unit-law-mul-ℚ⁺ _)) ( bernoullis-inequality-ℚ⁺ ε⁺ n))) ( b<nε)) unbounded-power-one-plus-ℚ⁺ : (ε : ℚ⁺) (b : ℚ) → exists ℕ (λ n → le-ℚ-Prop b (rational-ℚ⁺ (power-ℚ⁺ n (one-ℚ⁺ +ℚ⁺ ε)))) unbounded-power-one-plus-ℚ⁺ ε b = unit-trunc-Prop (bound-unbounded-power-one-plus-ℚ⁺ ε b)
If q is greater than one, qⁿ grows without bound
abstract bound-unbounded-power-greater-than-one-ℚ⁺ : (q : ℚ⁺) (b : ℚ) → le-ℚ⁺ one-ℚ⁺ q → Σ ℕ (λ n → le-ℚ b (rational-ℚ⁺ (power-ℚ⁺ n q))) bound-unbounded-power-greater-than-one-ℚ⁺ q⁺@(q , _) b 1<q = let (n , b<⟨1+q-1⟩ⁿ) = bound-unbounded-power-one-plus-ℚ⁺ (positive-diff-le-ℚ 1<q) b in ( n , tr ( le-ℚ b) ( ap ( rational-ℚ⁺ ∘ power-ℚ⁺ n) ( eq-ℚ⁺ (is-identity-right-conjugation-add-ℚ one-ℚ q))) ( b<⟨1+q-1⟩ⁿ)) unbounded-power-greater-than-one-ℚ⁺ : (q : ℚ⁺) (b : ℚ) → le-ℚ⁺ one-ℚ⁺ q → exists ℕ (λ n → le-ℚ-Prop b (rational-ℚ⁺ (power-ℚ⁺ n q))) unbounded-power-greater-than-one-ℚ⁺ q b 1<q = unit-trunc-Prop (bound-unbounded-power-greater-than-one-ℚ⁺ q b 1<q)
If ε is a positive rational number less than one, εⁿ becomes arbitrarily small
abstract bound-arbitrarily-small-power-le-one-ℚ⁺ : (ε δ : ℚ⁺) → le-ℚ⁺ ε one-ℚ⁺ → Σ ℕ (λ n → le-ℚ⁺ (power-ℚ⁺ n ε) δ) bound-arbitrarily-small-power-le-one-ℚ⁺ ε δ ε<1 = let 1/δ = inv-ℚ⁺ δ 1/ε = inv-ℚ⁺ ε 1<1/ε = tr ( λ q → le-ℚ⁺ q 1/ε) ( inv-one-ℚ⁺) ( inv-le-ℚ⁺ ε one-ℚ⁺ ε<1) (n , 1/δ<⟨1/ε⟩ⁿ) = bound-unbounded-power-greater-than-one-ℚ⁺ 1/ε (rational-ℚ⁺ 1/δ) 1<1/ε in ( n , binary-tr ( le-ℚ⁺) ( equational-reasoning inv-ℚ⁺ (power-ℚ⁺ n 1/ε) = inv-ℚ⁺ (inv-ℚ⁺ (power-ℚ⁺ n ε)) by ap inv-ℚ⁺ (power-inv-Group group-mul-ℚ⁺ n ε) = power-ℚ⁺ n ε by inv-inv-ℚ⁺ (power-ℚ⁺ n ε)) ( inv-inv-ℚ⁺ δ) ( inv-le-ℚ⁺ 1/δ (power-ℚ⁺ n 1/ε) 1/δ<⟨1/ε⟩ⁿ)) arbitrarily-small-power-le-one-ℚ⁺ : (ε δ : ℚ⁺) → le-ℚ⁺ ε one-ℚ⁺ → exists ℕ (λ n → le-prop-ℚ⁺ (power-ℚ⁺ n ε) δ) arbitrarily-small-power-le-one-ℚ⁺ ε δ 1<ε = unit-trunc-Prop (bound-arbitrarily-small-power-le-one-ℚ⁺ ε δ 1<ε)
If ε is a positive rational number less than or equal to 1 and m ≤ n, then εⁿ ≤ εᵐ
abstract leq-power-leq-one-ℚ⁺ : (ε : ℚ⁺) → leq-ℚ⁺ ε one-ℚ⁺ → (m n : ℕ) → leq-ℕ m n → leq-ℚ⁺ (power-ℚ⁺ n ε) (power-ℚ⁺ m ε) leq-power-leq-one-ℚ⁺ ε ε≤1 m n m≤n = let (k , k+m=n) = subtraction-leq-ℕ m n m≤n open inequality-reasoning-Poset ℚ-Poset in chain-of-inequalities rational-power-ℚ⁺ n ε ≤ rational-power-ℚ⁺ (k +ℕ m) ε by leq-eq-ℚ⁺ (ap (λ x → power-ℚ⁺ x ε) (inv k+m=n)) ≤ rational-power-ℚ⁺ k ε *ℚ rational-power-ℚ⁺ m ε by leq-eq-ℚ⁺ (distributive-power-add-ℚ⁺ k m ε) ≤ rational-power-ℚ⁺ k one-ℚ⁺ *ℚ rational-power-ℚ⁺ m ε by preserves-leq-right-mul-ℚ⁺ ( power-ℚ⁺ m ε) ( _) ( _) ( preserves-leq-power-ℚ⁺ k ε one-ℚ⁺ ε≤1) ≤ one-ℚ *ℚ rational-power-ℚ⁺ m ε by leq-eq-ℚ (ap-mul-ℚ (ap rational-ℚ⁺ (power-one-ℚ⁺ k)) refl) ≤ rational-power-ℚ⁺ m ε by leq-eq-ℚ (left-unit-law-mul-ℚ _)
If ε is a positive rational number less than 1, εⁿ approaches 0
abstract is-zero-limit-power-le-one-ℚ⁺ : (ε : ℚ⁺) → le-ℚ⁺ ε one-ℚ⁺ → is-zero-limit-sequence-ℚ (λ n → rational-ℚ⁺ (power-ℚ⁺ n ε)) is-zero-limit-power-le-one-ℚ⁺ ε ε<1 = is-limit-bound-modulus-sequence-Metric-Space ( metric-space-ℚ) ( _) ( zero-ℚ) ( λ δ → let (m , εᵐ<δ) = bound-arbitrarily-small-power-le-one-ℚ⁺ ε δ ε<1 open inequality-reasoning-Poset ℚ-Poset in ( m , λ n m≤n → neighborhood-leq-dist-ℚ ( δ) ( rational-power-ℚ⁺ n ε) ( zero-ℚ) ( chain-of-inequalities rational-dist-ℚ (rational-ℚ⁺ (power-ℚ⁺ n ε)) zero-ℚ ≤ rational-abs-ℚ (rational-ℚ⁺ (power-ℚ⁺ n ε)) by leq-eq-ℚ (ap rational-ℚ⁰⁺ (right-zero-law-dist-ℚ _)) ≤ rational-ℚ⁺ (power-ℚ⁺ n ε) by leq-eq-ℚ ( ap rational-ℚ⁰⁺ ( abs-rational-ℚ⁰⁺ (nonnegative-ℚ⁺ (power-ℚ⁺ n ε)))) ≤ rational-ℚ⁺ (power-ℚ⁺ m ε) by leq-power-leq-one-ℚ⁺ ε (leq-le-ℚ ε<1) m n m≤n ≤ rational-ℚ⁺ δ by leq-le-ℚ εᵐ<δ)))
See also
Recent changes
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-11-08. Louis Wasserman. The sum of rational geometric series (#1672).
- 2025-10-19. Louis Wasserman. Powers of arbitrary rational numbers (#1608).
- 2025-10-17. Louis Wasserman. Powers of positive rational numbers (#1600).