Pointwise ε-δ continuous maps between metric spaces
Content created by Louis Wasserman.
Created on 2026-01-10.
Last modified on 2026-01-10.
module metric-spaces.pointwise-epsilon-delta-continuous-maps-metric-spaces where
Imports
open import foundation.axiom-of-countable-choice open import foundation.propositions open import foundation.universe-levels open import metric-spaces.epsilon-delta-limits-of-maps-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pointwise-continuous-maps-metric-spaces
Idea
An
ε-δ pointwise continuous map¶
from a metric space X to a metric space Y
is a map f : X → Y such that for every x : X, the
ε-δ limit of f
as it approaches x is f x.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) where is-pointwise-ε-δ-continuous-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-pointwise-ε-δ-continuous-prop-map-Metric-Space = Π-Prop ( type-Metric-Space X) ( λ x → is-ε-δ-limit-prop-map-Metric-Space X Y f x (f x)) is-pointwise-ε-δ-continuous-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-pointwise-ε-δ-continuous-map-Metric-Space = type-Prop is-pointwise-ε-δ-continuous-prop-map-Metric-Space
Properties
Pointwise continuous maps are pointwise ε-δ continuous
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : pointwise-continuous-map-Metric-Space X Y) where abstract is-pointwise-ε-δ-continuous-map-pointwise-continuous-map-Metric-Space : is-pointwise-ε-δ-continuous-map-Metric-Space ( X) ( Y) ( map-pointwise-continuous-map-Metric-Space X Y f) is-pointwise-ε-δ-continuous-map-pointwise-continuous-map-Metric-Space x = is-ε-δ-limit-is-limit-map-Metric-Space ( X) ( Y) ( map-pointwise-continuous-map-Metric-Space X Y f) ( x) ( map-pointwise-continuous-map-Metric-Space X Y f x) ( is-pointwise-continuous-map-pointwise-continuous-map-Metric-Space ( X) ( Y) ( f) ( x))
Assuming countable choice, pointwise ε-δ continuous maps are pointwise continuous
module _ {l1 l2 l3 l4 : Level} (acω : ACω) (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) where abstract is-pointwise-continuous-is-pointwise-ε-δ-continuous-map-ACω-Metric-Space : is-pointwise-ε-δ-continuous-map-Metric-Space X Y f → is-pointwise-continuous-map-Metric-Space X Y f is-pointwise-continuous-is-pointwise-ε-δ-continuous-map-ACω-Metric-Space H x = is-limit-is-ε-δ-limit-map-ACω-Metric-Space ( acω) ( X) ( Y) ( f) ( x) ( f x) ( H x)
See also
Recent changes
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).