Pointwise ε-δ continuous maps between metric spaces

Content created by Louis Wasserman.

Created on 2026-01-10.
Last modified on 2026-01-10.

module metric-spaces.pointwise-epsilon-delta-continuous-maps-metric-spaces where
Imports
open import foundation.axiom-of-countable-choice
open import foundation.propositions
open import foundation.universe-levels

open import metric-spaces.epsilon-delta-limits-of-maps-metric-spaces
open import metric-spaces.maps-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.pointwise-continuous-maps-metric-spaces

Idea

An ε-δ pointwise continuous map from a metric space X to a metric space Y is a map f : X → Y such that for every x : X, the ε-δ limit of f as it approaches x is f x.

Definition

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : map-Metric-Space X Y)
  where

  is-pointwise-ε-δ-continuous-prop-map-Metric-Space :
    Prop (l1  l2  l4)
  is-pointwise-ε-δ-continuous-prop-map-Metric-Space =
    Π-Prop
      ( type-Metric-Space X)
      ( λ x  is-ε-δ-limit-prop-map-Metric-Space X Y f x (f x))

  is-pointwise-ε-δ-continuous-map-Metric-Space : UU (l1  l2  l4)
  is-pointwise-ε-δ-continuous-map-Metric-Space =
    type-Prop is-pointwise-ε-δ-continuous-prop-map-Metric-Space

Properties

Pointwise continuous maps are pointwise ε-δ continuous

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : pointwise-continuous-map-Metric-Space X Y)
  where

  abstract
    is-pointwise-ε-δ-continuous-map-pointwise-continuous-map-Metric-Space :
      is-pointwise-ε-δ-continuous-map-Metric-Space
        ( X)
        ( Y)
        ( map-pointwise-continuous-map-Metric-Space X Y f)
    is-pointwise-ε-δ-continuous-map-pointwise-continuous-map-Metric-Space
      x =
      is-ε-δ-limit-is-limit-map-Metric-Space
        ( X)
        ( Y)
        ( map-pointwise-continuous-map-Metric-Space X Y f)
        ( x)
        ( map-pointwise-continuous-map-Metric-Space X Y f x)
        ( is-pointwise-continuous-map-pointwise-continuous-map-Metric-Space
          ( X)
          ( Y)
          ( f)
          ( x))

Assuming countable choice, pointwise ε-δ continuous maps are pointwise continuous

module _
  {l1 l2 l3 l4 : Level}
  (acω : ACω)
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : map-Metric-Space X Y)
  where

  abstract
    is-pointwise-continuous-is-pointwise-ε-δ-continuous-map-ACω-Metric-Space :
      is-pointwise-ε-δ-continuous-map-Metric-Space X Y f 
      is-pointwise-continuous-map-Metric-Space X Y f
    is-pointwise-continuous-is-pointwise-ε-δ-continuous-map-ACω-Metric-Space
      H x =
      is-limit-is-ε-δ-limit-map-ACω-Metric-Space
        ( acω)
        ( X)
        ( Y)
        ( f)
        ( x)
        ( f x)
        ( H x)

See also

Recent changes